i-manager's Journal on Material Science (JMS)


Volume 2 Issue 3 October - December 2014

Research Paper

Finite Element Analysis for Optimal Design of Filament Wound Composite Tubes

Yasser Rihan* , B. Abd El-Bary**
* Atomic Energy Authority, Hot Lab. Center, Egypt.
** Menoufia University, Faculty of Engineering, Production Engineering & Mechanical Design Department, Egypt.
Rihan, Y., & El-Bary, B. A. (2014). Finite Element Analysis for Optimal Design of Filament Wound Composite Tubes. i-manager's Journal on Material Science, 2(3), 1-11. https://doi.org/10.26634/jms.2.3.2957

Abstract

Filament wound composite tubes can be used for making high-pressure storage tanks, rocket motor cases, and launch tubes, and for commercial applications, such as golf club shafts and fishing rods. A variety of fibers and resins can be used, depending on the cost and the level of performance needed. This paper presents the results of a mathematical modeling investigation into the behavior of the filament wound composite tubes subjected to various loading conditions. Filament wound tubes were modeled as multi layered orthotropic tubes and several analyses were performed on these tubes by using finite element method (FEM). Three types of fiber epoxy tubes with different wind angles, level of orthotropy and various ratios of the loading conditions were produced and tested for the behavior of filament wound composite tubes. The required data were obtained for the design of filament wound composite tubes under combined loading. The mathematical model used was validated using experimental data obtained from filament wound tube tests in previous studies.

Research Paper

Enhancement in Electrical Properties of PEO Based Nano-Composite Gel Electrolytes

Dr. Rajiv Kumar*
*Assistant Professor, Department of Physics, Goswami Ganesh Dutt Sanatan Dharam College, Hariana, Hoshiarpur, Punjab, India.
Kumar, R. (2014). Enhancement in electrical properties of PEO based nano-composite gel electrolytes. i-manager's Journal on Material Science, 2(3), 12-17. https://doi.org/10.26634/jms.2.3.2962

Abstract

The nano-composite polymer gel electrolytes containing polyethylene oxide (PEO), triflic acid, dimethylacetamide (DMA), propylene carbonate (PC), ethylene carbonate (EC) and nano-porous alumina filler (Al2O3) have been synthesized. The AC impedance has been studied to evaluate Ionic conductivity of the electrolytes. pH, viscosity and thermal properties of these electrolytes have also been studied. The increase in conductivity has been observed with the addition of polymer to liquid electrolytes which has been explained to be due to the breaking of ion aggregates present in electrolytes. The increase in free H+ ion concentration upon breaking of ion aggregates has also been observed in pH measurements. It was observed that the conductivity increases with an increase in the concentration of nano filler and two maxima in conductivity have also been observed. The maximum conductivity of 1.02 × 10-2 S/cm has been observed at 8 wt% concentration of nano filler. A possible mechanism for the increase in conductivity could be the creation of additional hopping sites and favorable conducting pathways for migrating ionic species though Lewis acid- base type interactions between ionic species and O- sites on the filler grain surface. Temperature dependence conductivity of polymer gel electrolytes follows Arrhenius behaviour. The gels containing DMA are stable over upto 125o C range of temperature, while gels based on PC and EC are stable only upto 40oC temperature range which looses their gelling nature above 40o C. The conductivity does not show any appreciable change with temperature which is desirable for their use in smart electrochemical applications at low temperature.

Research Paper

Study On Design And Manufacturing Of Dye Sensitized Solar Cell By Using Biomass Based Dye: Performance Evaluation Of Different Types Of Dye Sensitized Solar Cells

K. Mohan Reddy* , K.S.R. Murthy**
*-** Department of Chemistry, College of Engineering Studies, University of Petroleum & Energy Studies (UPES), Dehradun, India.
Reddy, K. M., & Murthy, K. S. R. (2014). Study on Design and Manufacturing of Dye Sensitized Solar Cell by Using Biomass Based Dye: Performance Evaluation of Different Types of Dye Sensitized Solar Cells. i-manager's Journal on Material Science, 2(3), 18-26. https://doi.org/10.26634/jms.2.3.2964

Abstract

The present study is aimed at developing third generation Dye Sensitized Solar Cell (DSSC) technology research which is being recently used as an alternative to crystalline solar cell because of its increase in the efficiency with less cost, thin film and flexibility. The paper includes the most recent research topics on utilization of porous zinc oxide photo electrode, Graphene, Nano structured titanium oxide, ionic liquid electrolytes, carbon Nano tubes and biomass based pigments for manufacturing dye sensitized solar cell. The paper also describes various options to increase the efficiency and analyses the perspectives for the future development of the technology. This study not only covers the fundamentals of DSSC but also the related cutting edge research like durability, high efficiency, low cost and rural level manufacture process by using screen printer, dye tank and programmable hot plate and its development for its commercial applications.

Research Paper

Preparation and Characterization of Long Persistence Strontium Aluminate Phosphor

Dr R. P.*
*Professor, Department of Applied Physics, Faculty of Engineering and Technology, SSGI, Shri Shankaracharya Technical Campus, Junwani, Bhilai (C.G.), India
Patel, R. P. (2014). Preparation and Characterization of Long Persistence Strontium Aluminate Phosphor. i-manager's Journal on Material Science, 2(3), 27-30. https://doi.org/10.26634/jms.2.3.2965

Abstract

The present paper reports the synthesis of SrAl2O4:Eu2+ , Dy3+ long persistent nano phosphor by combustion method using urea as reducer at 650°C. Crystallization, particles size and luminescence properties of the sample have been investigated. It is found' that the average size of particle is nano to micrometer. The emission spectra are broad bands with the peaks at 520 nm, respectively. The persistent luminescence phenomenon involves the formation of traps followed by thermal bleaching of traps and the characteristic Eu2+ emission as well as the nature of traps and the persistent time is 10 times longer than that of traditional sulfide phosphors . Absorption spectra and XRD have been used to characterize the synthesized phosphor.

Research Paper

Investigation Of Electrical Properties Of Polyaniline/Silver Nanocomposite Free Standing Films

Sonika Thakur* , Lakhwant Singh**
* Department of Physics, Guru Nanak Dev University College Verka, Amritsar, Punjab, India.
** Department of Physics, Guru Nanak Dev University, Amritsar, Punjab, India.
Thakur, S., & Singh, L. (2014). Investigation of Electrical Properties of Polyaniline/Silver Nanocomposite Free Standing Films. i-manager's Journal on Material Science, 2(3), 31-34. https://doi.org/10.26634/jms.2.3.2966

Abstract

This work reports the synthesis and electrical characterization of polyaniline/silver (PA/Ag) nanocomposite free standing films. The dc conductivity measurements in the temperature range of 80-300K, Hall Effect studies at room temperature and dielectric measurements in the frequency range from 75 kHz to 5 MHz of the synthesized films, inferred semiconducting behavior of the samples. Significant improvement in the electrical properties of nanocomposites has been observed and discussed in this manuscript.

Research Paper

Characterisation of Polymer Gel Electrolytes Containing Imidazolium Based Ionic Liquids

Dilraj Preet Kaur*
*Assistant Professor, Department of Physics, Dolphin (PG) College of Science and Agriculture, Punjab, India.
Kaur, D. P. (2014). Characterisation of Polymer Gel Electrolytes Containing Imidazolium Based Ionic Liquids. i-manager's Journal on Material Science, 2(3), 35-38. https://doi.org/10.26634/jms.2.3.2967

Abstract

Poly (vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP)-ionic liquid gel electrolytes have been synthesized using ionic liquid 2,3-dimethyl-1-hexylimidazolium bis (trifluoromethanesulfonyl)imide (DMHxImTFSI) and propylene carbonate. Ionic conductivity of the ionic liquid is 2.47 x 10- 3 Scm-1 at 30oC and polymer gel electrolytes also possess conductivity of the same order. The dependence of ionic conductivity on the concentration of ionic liquid, polymer and temperature has been studied. TGA/DSC (Thermogravimetric Analysis / Differential Scanning Calorimetry) studies show that the polymer gel electrolyte containing ionic liquid is thermally stable upto 100oC.