A Review on Plasma Ion Nitriding (PIN) Process

Ravindra Kumar*, Dheeraj Bhardwaj**, Y. C. Sharma***
* Associate Lecturer, Department of Physics, Birla Institute of Technology, Mesra, Jaipur Campus, Rajasthan, India.
** Assistant Professor, Department of Physics, Birla Institute of Technology, Mesra, Jaipur Campus, Rajasthan, India.
*** Dean, Research & Development and Professor, Department of Physics, Vivekananda Global University, Jaipur, Rajasthan, India.
Periodicity:April - June'2018
DOI : https://doi.org/10.26634/jms.6.1.14000

Abstract

In this review paper, an effort has been made to understand the plasma ion nitriding process and other existing nitriding processes used in industries. The solubility of nitrogen atoms in the steel matrix have been explained through Fe-N system. The formation of different stable and metastable compounds during nitriding process has been discussed. Different types of nitriding processes have been thoroughly reviewed with their advantages and disadvantages. It was found that plasma ion nitriding process is more reliable as compared to other existing processes in use. Important results of diagnostics and its applications to improve the mechanical and chemical (corrosion) properties of ferrous and non ferrous alloys have been discussed. It was found that N2+, N+ , NH, Hα , and Hβ species exist in the plasma nitriding process,  but nitrogen ions (N+) was the most dominant species. Hydrogen plays a significant role in the plasma nitriding process. It was reported that surface hardness and case depth were maximum for the gas ratio of 10% N2 and 90% H2 . The effect of various plasma nitriding process parameters and role of various alloying elements in the plasma nitriding process have been also discussed. If the steel has strong nitride forming elements (Cr, Al, Mo, etc.) under low concentration (~ 1-2%), the diffusion depth and hardness will be more. In the non-ferrous alloys, plasma nitrided samples have two or three distinct layers that depends on the plasma reactivity. Nitrided layer increases only until the critical time and temperature  (4500C) were reached.

Keywords

Plasma Nitriding, Surface Hardness, Wear Resistance, Corrosion.

How to Cite this Article?

Kumar, R., Bhardwaj, D., and Sharma,Y. C. (2018). A Review on Plasma Ion Nitriding (PIN) Process. i-manager’s Journal on Material Science, 6(1), 31-44. https://doi.org/10.26634/jms.6.1.14000

References

[1]. Alphonsa, J., Sinha, G., Kumar, A., Jhala, G., Tiwari, S. K., Gupta, S., ... & Mukherjee, S. (2008). Effect of frequency on the properties of plasma nitrided AISI 4340 steel. Journal of Metallurgy and Materials Science, 50(2), 119-125.
[2]. Bacci, T., Borgioli, F., Galvanetto, E., & Pradelli, G. (2001). Glow-discharge nitriding of sintered stainless steels. Surface and Coatings Technology, 139(2-3), 251-256.
[3]. Baldwin, M. J., Collinss, G. A., Fewell, M. P., Haydon, S. C., Kumar, S., Short, K. T., & Tendys, J. (1997). The lowpressure RF plasma as a medium for nitriding iron and steel. Japanese Journal of Applied Physics, 36(7S), 4941.
[4]. Barnikel, J., Schutte, K., & Bergmann, H. W. (1997). Nitrieren von Aluminiumlegierungen mit UV-Laserstrahlung. HTM. Härterei-technische Mitteilungen, 52(2), 91-93.
[5]. Berns, H. (1994). Edge Nitriding for Producing a Highstrength Austenitic Surface Layer in Stainless Steels (German Patent 4333917 C2).
[6]. Berns, H., & Siebert, S. (1994). Randaufsticken nichtrostender Stähle/ Edge embroidery of stainless steels. Hart.-Tech. Mitt., 49(2), 123-128.
[7]. Blawert, D. C. (2000). Low Temperature Nitriding of Steel by Plasma Immersion Ion Implantation (Doctoral Dissertation, Technical University of Clausthal).
[8]. Borges, C. F. M., Hennecke, S., & Pfender, E. (2000). Decreasing chromium precipitation in AISI 304 stainless steel during the plasma-nitriding process. Surface and Coatings Technology, 123(2-3), 112-121.
[9]. Borges, C. F. M., Pfender, E., & Heberlein, J. (2001). Influence of nitrided and carbonitrided interlayers on enhanced nucleation of diamond on stainless steel 304. Diamond and Related Materials, 10(11), 1983-1990.
[10]. Borowski, T., Brojanowska, A., Kost, M., Garbacz, H., & Wierzchoń, T. (2009). Modifying the properties of the Inconel 625 nickel alloy by glow discharge assisted nitriding. Vacuum, 83(12), 1489-1493.
[11]. Bougdira, J., Henrion, G., & Fabry, M. (1991). Effects of hydrogen on iron nitriding in a pulsed plasma. Journal of Physics D: Applied Physics, 24(7), 1076-1080.
[12]. Collins, G. A., Hutchings, R., Short, K. T., Tendys, J., Li, X., & Samandi, M. (1995). Nitriding of austenitic stainless steel by plasma immersion ion implantation. Surface and Coatings Technology, 74, 417-424.
[13]. Conrad, J. R. (1987). Sheath thickness and potential profiles of ion‐matrix sheaths for cylindrical and spherical electrodes. Journal of Applied Physics, 62(3), 777-779.
[14]. Conrad, J. R., Radtke, J. L., Dodd, R. A., Worzala, F. J., & Tran, N. C. (1987). Plasma source ion‐implantation technique for surface modification of materials. Journal of Applied Physics, 62(11), 4591-4596.
[15]. Dahm, K. L., Short, K. T., & Collins, G. A. (2007). Characterisation of nitrogen-bearing surface layers on Nibase superalloys. Wear, 263(1-6), 625-628.
[16]. D'Anna, E., De Giorgi, M. L., Leggieri, G., Luches, A., Martino, M., Perrone, A., ... & Drigo, A. V. (1992). Oxidation interference in direct laser nitridation of titanium: Relative merits of various ambient gases. Thin Solid Films, 213(2), 197-204.
[17]. Díaz-Guillén, J. C., Campa-Castilla, A., Pérez-Aguilar, S. I., Granda-Gutiérrez, E. E., Garza-Gómez, A., Candelas- Ramírez, J., & Méndez-Méndez, R. (2009). Effect of duty cycle on surface properties of AISI 4340 using a pulsed plasma nitriding process. Superficies y vacío, 22(1), 1-4.
[18]. Egawa, M., Ueda, N., Nakata, K., Tsujikawa, M., & Tanaka, M. (2010). Effect of additive alloying element on plasma nitriding and carburizing behavior for austenitic stainless steels. Surface and Coatings Technology, 205, S246-S251.
[19]. Gouné, M., Belmonte, T., Fiorani, J. M., Chomer, S., & Michel, H. (2000). Modelling of diffusion–precipitation in nitrided alloyed iron. Thin Solid Films, 377, 543-549.
[20]. Guillermet, A. F., & Hong., D. (1994). Thermodynamic analysis of the FeN system using the compound-energy model with predictions of the vibrational entropy. Z. Metallkd., 85, 154-163.
[21]. Gupta, D. (2011). Plasma Immersion Ion Implantation (PIII) process-physics and technology. International Journal of Advancements in Technology, 2(4), 471-490.
[22]. Han, M. V. V. (2001). Laser Nitriding of Metals: Influence of the Ambient Pressure and the Pulse Duration (Doctoral Dissertation, der Georg-August-Universität zu Göttingen).
[23]. Hannula, S. P., Nenonen, P., & Hirvonen, J. P. (1989). Surface structure and properties of ion-nitrided austenitic stainless steels. Thin Solid Films, 181(1-2), 343-350.
[24]. Hossain, M. I., Bepari, M. M. A., & Shorowardi, K. M. (n.d). Effect of carburizing time and wear properties on carburized heat treated Chromium (Cr) and Nickel- Chromium (Ni-Cr) steel. Retrieved from www.academia. edu
[25]. Jagielski, J., Moncoffre, N., Marest, G., Thome, L., Barcz, A. J., Gawlik, G., & Rosinski, W. (1994). Radiation‐induced segregation of nitrogen implanted into iron. Journal of Applied Physics, 75(1), 153-160.
[26]. Jeong, B. Y., & Kim, M. H. (2001). Effects of the process parameters on the layer formation behavior of plasma nitrided steels. Surface and Coatings Technology, 141(2-3), 182-186.
[27]. John, P. I. (2005). Plasma Science and the Creation of Wealth. Tata McGraw-Hills, New Delhi.
[28]. Kahraman, F., & Karadeniz, S. (2011). Characterization and wear behavior of plasma nitrided nickel based dental alloy. Plasma Chemistry and Plasma Processing, 31(4), 595-604.
[29]. Karakan, M., Alsaran, A., & Celik, A. (2002). Effects of various gas mixtures on plasma nitriding behavior of AISI 5140 steel. Materials Characterization, 49(3), 241-246.
[30]. Kopeliovich, D. (2012). Ion Nitriding. Retrieved from http://www.heattreatnews.com/pdf/NitridingKnowledgeArti cle.pdf
[31]. Kumar, R., Alphonsa, J., Prakash, R., Boob, K. S., Ghanshyam, J., Rayjada, P. A., ... & Mukherjee, S. (2011). Plasma nitriding of AISI 52100 ball bearing steel and effect of heat treatment on nitrided layer. Bulletin of Materials Science, 34(1), 153-159.
[32]. Kumar, R., Srivastava, A. K., & Konar, S. (2016). Evaluation of surface properties of various plasma nitrided low alloy steels. Advanced Science Letters, 22(11), 3919- 3923.
[33]. Kunze, J. (1990). Nitrogen and Carbon in Iron and Steel Thermodynamics. Berlin: Akademie Verlag.
[34]. Larisch, B., Brusky, U., & Spies, H. J. (1999). Plasma nitriding of stainless steels at low temperatures. Surface and Coatings Technology, 116, 205-211.
[35]. Lee, T. H., Oh, C. S., Lee, M. K., & Han, S. W. (2010). Nitride precipitation in salt-bath nitrided interstitial-free steel. Materials Characterization, 61(10), 975-981.
[36]. Leroy, C., Czerwiec, T., Gabet, C., Belmonte, T., & Michel, H. (2001). Plasma assisted nitriding of Inconel 690. Surface and Coatings Technology, 142, 241-247.
[37]. Liang, W., Juncai, S., & Xiaolei, X. (2001). Low pressure plasma arc source ion nitriding compared with glow-discharge plasma nitriding of stainless steel. Surface and Coatings Technology, 145(1-3), 31-37.
[38]. Lieberman, M. A., & Lichtenberg, A. J. (2005). Principles of Plasma Discharges and Material Processing, John Wiley & Sons, New Jersey.
[39]. Mahboubi, F. (1998). The influence of the mode of plasma generation on the plasma nitriding behavior of a microalloyed steel (Doctoral Dissertation, University of Wollongong).
[40]. Marchev, K., Cooper, C. V., Blucher, J. T., & Giessen, B. C. (1998). Conditions for the formation of a martensitic single-phase compound layer in ion-nitrided 316L austenitic stainless steel. Surface and Coatings Technology, 99(3), 225-228.
[41]. Mendes, A. F., Scheuer, C. J., Joanidis, I. L., Cardoso, R. P., Mafra, M., Klein, A. N., & Brunatto, S. F. (2014). Lowtemperature plasma nitriding of sintered PIM 316L austenitic stainless steel. Materials Research, 17, 100-109.
[42]. Mindivan, F., & Mindivan, H. (2013). Comparisons of wear performance of hardened Inconel 600 by different nitriding processes. Procedia Engineering, 68, 730-735.
[43]. Moller, W., & Mukherjee, S. (2002). Plasma-based ion implantation. Current Science, 83, 237-253.
[44]. Moskalioviene, T., & Galdikas, A. (2015). The effect of hydrogen on plasma nitriding of austenitic stainless steel: Kinetic modeling. Metallurgical and Materials Transactions A, 46(12), 5588-5595.
[45]. Mukherjee, S. (2002). Plasma-based nitrogen incorporation techniques for surface modification. Current Science, 83(3), 263-270.
[46]. Murthy, C. C., & Rao, A. R. (1983). Performance studies on salt bath treated low-carbon steel gears. Tribology International, 16(1), 3-8.
[47]. Musil, J., Vlček, J., & Růžička, M. (2000). Recent progress in plasma nitriding. Vacuum, 59(4), 940-951.
[48]. Naeem, M., Raza, H. A., Shafiq, M., Zaka-ul-Islam, M., Iqbal, J., Díaz-Guillén, J. C., & Zakaullah, M. (2017). Effect of pulsed duty cycle control on tribological and corrosion properties of AISI-316 in cathodic cage plasma nitriding. Materials Research Express, 4(11), 116507.
[49]. Ochoa, E. A., Wisnivesky, D., Minea, T., Ganciu, M., Tauziede, C., Chapon, P., & Alvarez, F. (2009). Microstructure and properties of the compound layer obtained by pulsed plasma nitriding in steel gears. Surface and Coatings Technology, 203(10-11), 1457-1461.
[50]. Ogale, S. B., Patil, P. P., Phase, D. M., Bhandarkar, Y. V., Kulkarni, S. K., Kulkarni, S., ... & Guha, S. (1987). Synthesis of metastable phases via pulsed-laser-induced reactive quenching at liquid-solid interfaces. Physical Review B, 36(16), 8237-8250.
[51]. Pessin, M. A., Tier, M. D., Strohaecker, T. R., Bloyce, A., Sun, Y., & Bell, T. (2000). The effects of plasma nitriding process parameters on the wear characteristics of AISI M2 tool steel. Tribology Letters, 8(4), 223-228.
[52]. Petitjean, L., & Ricard, A. (1984). Emission spectroscopy study of N2 -H2 glow discharge for metal surface nitriding. Journal of Physics D: Applied Physics, 17(5), 919-929.
[53]. Pulkkinen, R. E. E., & Lähdeniemi, M. (1983). Grain boundary segregation in bright nitrided α-irons alloyed with chromium, molybdenum and silicon. Journal of Materials Science, 18(11), 3421-3426.
[54]. Pye, D. (2003). Practical Nitriding and Ferritic Nitrocarburizing. ASM International. Park, Ohio.
[55]. Sharma, M. K., Saikia, B. K., Phukan, A., & Ganguli, B. (2006). Plasma nitriding of austenitic stainless steel in N2 and N2 –H2 DC pulsed discharge. Surface and Coatings Technology, 201(6), 2407-2413.
[56]. Siebert, S. (1994). Solution Nitriding of Stainless Steels (Doctoral Dissertation, Ruhr-University).
[57]. Sirin, S. Y., Sirin, K., & Kaluc, E. (2008). Effect of the ion nitriding surface hardening process on fatigue behavior of AISI 4340 steel. Materials Characterization, 59(4), 351-358.
[58]. Skonieski, A. F. O., Santos, G. R. D., Hirsch, T. K., & Rocha, A. D. S. (2013). Metallurgical response of an AISI 4140 steel to different plasma nitriding gas mixtures. Materials Research, 16(4), 884-890.
[59]. Spencer, M. S. (1992). On the rate-determining step and the role of potassium in the catalytic synthesis of ammonia. Catalysis Letters, 13(1-2), 45-53.
[60]. Sudha, C., Anand, R., Paul, V. T., Saroja, S., & Vijayalakshmi, M. (2013). Nitriding kinetics of Inconel 600. Surface and Coatings Technology, 226, 92-99.
[61]. Taherkhani, K., & Mahboubi, F. (2013). Investigation nitride layers and properties surfaces on pulsed plasma nitrided hot working steel AISI H13. Iran. J. Mater. Sci. Eng., 10(2), 29-36.
[62]. Takahashi, (1993). Glow plasma behaviour in nitriding process. trans. JWRI, 22(1), 13-19.
[63]. Tendys, J., Donnelly, I. J., Kenny, M. J., & Pollock, J. T. A. (1988). Plasma immersion ion implantation using plasmas generated by radio frequency techniques. Applied Physics Letters, 53(22), 2143-2145.
[64]. Terwagne, G., Piette, M., Bertrand, P., & Bodart, F. (1989a). Temperature and dose dependences of nitrogen implantation into iron. Materials Science and Engineering: B, 2(1-3), 195-201.
[65]. Terwagne, G., Piette, M., Bodart, F., & Möller, W. (1989b). Temperature and dose dependence of nitrogen implantation into iron: Experimental results and numerical modelling. Materials Science and Engineering: A, 115, 25- 30.
[66]. Thomas, J., Scheid, C., & Geiger, G. (1992). Nitrogen control during electric arc furnace steelmaking. Electric Arc Furnace Conference Proceedings (pp. 263-285).
[67]. Vandervell, H. D., & Waugh, K. C. (1990). On the role of promoters in promoted iron catalysts used in the industrial synthesis of Ammonia. Chemical Physics Letters, 171(5-6), 462-468.
[68]. Varman, J. A. M., & Huchel, U. (2017). Effect of pulse repetition time on surface properties of pulsed plasma nitrided AISI 4340 steel. Indian Journal of Science and Technology, 10(38), 1-8.
[69]. Wang, L., Ji, S., & Sun, J. (2006). Effect of nitriding time on the nitrided layer of AISI 304 austenitic stainless steel. Surface and Coatings Technology, 200(16-17), 5067-5070.
[70]. Williams, J. S., & Poat, J. M. (1984). Ion Implantation and Ion Beam Processing, Academic Press, New York.

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

If you have access to this article please login to view the article or kindly login to purchase the article
Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.