i-manager's Journal on Material Science (JMS)


Volume 3 Issue 1 April - June 2015

Research Paper

Investigations into Recent Advancements in Plasma Arc Machining

Dreema J. Prakash* , Govindan Puthumana**
* M.Tech student, Government College of Engineering Kannur, Kerala, India.
** Assistant Professor, Government College of Engineering Kannur, Kerala, India.
Prakash, D. J., and Govindan, P. (2015). Investigations into Recent Advancements in Plasma Arc Machining. i-manager’s Journal on Material Science, 3(1), 1-7. https://doi.org/10.26634/jms.3.1.3365

Abstract

This paper details an investigation into various advancements in plasma arc machining process. Characterization of the temperature of the plasma has always been a great challenge in plasma arc machining. In most of the investigations, surface temperatures due to plasma heating are systematically characterized through numerical modeling and experimental investigations are done using newer techniques such as infrared radiation thermometry. Furthermore, the characteristics of plasma cutting for thick steel ship plate have been discussed. The experimental investigations have revealed that the gas cutting speed is significantly lower than plasma cutting speed. The flow of molten metal is a governing factor in the process. This flow was found to be influenced by the cutting conditions during plasma cutting through experiments. Another prominent factor is the impact of the quality of the cut, by the shape of the cut and heat affected zone depth. In addition to the quality considerations, cost is also important. The removal rate is therefore, to be accurately estimated for evaluating the cost of production. Considering the plasma cutting machine as a system, i) power of the system, and ii) system process variables require supplementary considerations while optimizing the process outputs.

Research Paper

Prediction of Nugget Size for Resistance Spot Weld of Mg Alloys Using Artificial Neural Network

D. Afshari* , H. Talebi**
* Assistant Professor, Department of Mechanical Engineering, Faculty of Engineering, University of Zanjan, Iran.
** PG Scholar, Department of Mechanical Engineering, Kharazmi University, Iran.
Afshari, D., and Talebi, H. (2015). Prediction of Nugget Size for Resistance Spot Weld of Mg Alloys Using Artificial Neural Network. i-manager’s Journal on Material Science, 3(1), 8-13. https://doi.org/10.26634/jms.3.1.3366

Abstract

In this study, a finite element model and an artificial neural network model have been used to predict nugget size for resistance spot weld of AZ31 Mg alloy. The quality and strength of spot welds determine the integrity of the structure, which depends thoroughly on the nugget size. Different spot welding parameters such as the welding current, the welding time and electrode force were selected to be used for the FE (Finite Element) model. Although, the use of a finite-element analysis decreases the main costs associated with the nugget-size measurement tests; due to high complexity of a spot weld, its FE models are very time-consuming and requiring high-speed computers. So in this study, a FE model along with an Artificial Neural Network (ANN) has been adopted to predict the nugget size. The results obtained with the FE analysis were used to build up a back-propagation ANN model for the nugget-size prediction. The results revealed that a combination of these two developed models can accurately and rapidly predict the nugget size for a resistance spot weld of AZ31 Mg alloy.

Research Paper

Experimental Investigation to Optimize Process Parameters in Electrochemical Assisted Abrasive Flow Finishing of Al-6061 alloy Using Taguchi Method

Balinder Chahal* , Ravi Gupta**, Rahul O. Vaishya***
* M.Tech Student, Mechanical Department, Lovely Professional University, Jalandhar, India.
** Assistant Professor, Mechanical Department, Lovely Professional University, Jalandhar, India.
*** Assistant Professor, Production Department, Punjab Engineering College, Chandigarh, India
Chahal, B., Gupta, R., and Vaishya, R. O. (2015). Experimental Investigation to Optimize Process Parameters in Electrochemical Assisted Abrasive Flow Finishing of Al-6061 alloy Using Taguchi Method. i-manager’s Journal on Material Science, 3(1), 14-22. https://doi.org/10.26634/jms.3.1.3367

Abstract

Electrochemical assisted abrasive flow finishing is a newly developed hybrid finishing process which is used to finish the internal parts of work piece having complicated geometry to a large extent. In electrochemical assisted abrasive flow machining higher abrasion of the material was detected due to the combined effect of ECM(Electro Chemical Machining) and AFF (Abrasive Flow Finishing) processes. In Electrochemical aided abrasive flow machining, a electrolyte is added to the prepared media .This media consist of a kind of polymeric carrier and abrasive particles that are hydrocarbon gel, Al O , Silicon based polymer, and NaI (Sodium iodide) as electrolytic salt. In this experimental 2 3 research, different process parameters such as voltage, abrasive concentration, number of cycles, molal concentration and diameter of rod were considered at different levels for response characteristic of surface roughness (Ra) based on Taguchi method using standard L27 Orthogonal Array (OA) for the plan of experimentation. To determine the contribution of each parameter, analysis of variance was used.

Research Paper

Mathematical Modeling and Experimental Evaluation of the Tensile Properties of Multiwalled Carbon Nanotubes filled Acrylonitrile Butadiene Styrene Composites

M. S. Krupashankara* , Shreevathsa**, Kishore Kumar Shet***, Sridhara B.K.****
*,*** Department of Mechanical Engineering, R.V.College of Engineering (Affiliated to Visvesvaraya Technological University), Bangalore, India.
**,**** Department of Mechanical Engineering, The National Institute of Engineering, (Affiliated to Visvesvaraya Technological University), Mysore, India.
Krupashankara, M. S., Shreevathsa, Shet, K. K., and Sridhara, B. K. (2015). Mathematical Modeling & Experimental Evaluation of the Tensile Properties of Multiwalled Carbon Nanotubes filled Acrylonitrile Butadiene Styrene Composites. i-manager’s Journal on Material Science, 3(1), 23-30. https://doi.org/10.26634/jms.3.1.3368

Abstract

Multiwalled Carbon Nanotubes (MWCNT) were melt-blended into ABS matrix using twin screw extrusion process. The percentage of MWCNT was varied from 0 to 15%. Tensile properties were measured using ASTM D638-10. At 10 wt.% these composites showed the highest modulus values of ~1600 MPa, which is nearly 40% higher compared to pure ABS. The ultimate tensile strength values of 15 wt.% MWCNT-ABS composite was 25% more than pure ABS. The failure strain of MWCNT-ABS composites drops linearly to 4% for a reinforcement of 15 wt.% MWCNT in ABS matrix. FESEM (Field Emission Scanning Electron Microscopy) examination of the specimens revealed a combination phase separated and exfoliated structure with polymer matrix over MWCNT. The experimental results were compared with theoretical iso-stress, iso-strain & Halpin-Tsai models. The experimental results lie between the theoretical values determined using the iso-stress and Halpin-Tsai models only if the 'effective l/d' ratio is considered in case of MWCNT. Microscopic analysis of the composites revealed the 'effective l/d' ratio to be in the range of 1 to 2.5. The experimental results of the ultimate strength values match well with the modified rule of mixture model, with strength efficiency and effective length factors. This paper has attempted to introduce two new factors 'effective l/d ratio' and 'effective length' to co-relate experimental and theoretical data.

Research Paper

Revival and Collapse of the Vibrational State Wave Packet for Diatomic Molecule in an Anharmonic Potential

Maninder Kaur* , Mahmood Mian**, Manpreet Kaur***
*Assistant Professor, Department of Physics, D.A.V. College, Amritsar, India.
** Professor, Department of Physics, Guru Nanak Dev University, Amritsar, India.
***P.G Graduate, Department of Physics, D.A.V. College, Amritsar, India
Kaur, M., Mian, M., and Kaur, M. (2015). Revival and Collapse of the Vibrational State Wave Packet for Diatomic Molecule in an Anharmonic Potential. i-manager’s Journal on Material Science, 3(1), 31-36. https://doi.org/10.26634/jms.3.1.3369

Abstract

This paper presents the time evolution of a quantum wave packet bound in the Morse potential. The quantum wave packet is the superposition of vibrational energy levels of a diatomic molecule in an anharmonic potential. The probability density function, auto-correlation function, and various time scales have been used to explore the revival pattern of this wave packet. The dynamics of the wave packet with respect to time shows a series of collapses and the subsequent revivals. The results are presented for CO molecule.