COMPARATIVE ANALYSIS AND DESIGN OF INTEGRAL BRIDGES: THERMAL EFFECTS, SOIL-STRUCTURE INTERACTION, AND STRUCTURAL PERFORMANCE
EVALUATION OF BAMBOO LEAF ASH AS SUPPLEMENTARY CEMENTITIOUS MATERIAL IN CONCRETE
ASSESSMENT OF METEOROLOGICAL DROUGHTS IN THREE REGIONS OF BENGALURU, KARNATAKA
Experimental Study on Performance of Reinforced Concrete (RC) Beams with Varied Proportions of Fly Ash
Deep Learning - Based Detection of Fine Cracks in High-Resolution Concrete Dam Surfaces
Study on Strength Properties of Lightweight Expanded Clay Aggregate Concrete
A Step By Step Illustrative Procedure to Perform Isogeometric Analysis and Find the Nodal Displacements for a Two Dimensional Plate Structure
Lateral - Torsional Buckling of Various Steel Trusses
Comparative Study on Methodology of Neo-Deterministic Seismic Hazard Analysis Over DSHA and PSHA
A Step by Step Procedure to Perform Isogeometric Analysis of Beam and Bar Problems in Civil Engineering Including Sizing Optimisation of a Beam
Investigation on the Properties of Non Conventional Bricks
Analysis on Strength and Fly Ash Effect of Roller Compacted Concrete Pavement using M-Sand
Investigation on Pozzolanic Effect of Mineral Admixtures in Roller Compacted Concrete Pavement
Effect of Symmetrical Floor Plan Shapes with Re-Entrant Corners on Seismic Behavior of RC Buildings
Effect of Relative Stiffness of Beam and Column on the Shear Lag Phenomenon in Tubular Buildings
The demand for energy is high and is expected to continue increasing with the growth in both population and technological development. With the increase in energy demand, concerns about environmental issues, such as the depletion of nonrenewable energy sources, environmental pollution, health and safety hazards, and the production of waste, also increase. In order to meet sustainability goals, methods of conserving energy need to be explored and implemented. In this study,a model of the construction-deconstruction life cycle of a building was developed to assess the significance of energy savings when recyclable materials, reusable materials, renewable energy sources, and more efficient systems are incorporated. The model enables both the evaluation of the energy requirements for each process for any building type and the assessment of energy savings from conservation efforts. When compared with the energy requirements of a standard home, the use of reusable materials conserved significantly has more energy than any other scenario. Using of recyclable building materials was another effective method of energy conservation, but the savings were not as great as with reusable materials. The use of energy efficient systems conserved the least energy and the use of renewable energy sources resulted in a savings that was between the use of efficient systems and the use of recyclable materials.
A dome resembles the hollow upper half of a sphere and has been used from the ancient times in building structures. It has inherent structural strength when properly built and can span large open spaces without interior supports. These domes can be subjected to missile and bullet attacks and can get damaged. Now a days many types of monolithic domes are being built to intercept missile attack. The damage depends upon the striking mass, its shape and velocity. The heavier the object and the faster it moves, the more damage it will cause. Also the shape of the striking object has an important role in piercing the target. An analytical study was planned on the bullet impact on different shapes of the domes. The speed attenuation was studied and reported. The effect of bullet nose shape and dome boundary conditions are also discussed.
Cracking is a frequent cause of complaints in the concrete industry. Cracking can be the result of one or a combination of factors such as drying shrinkage, thermal contraction, restraint (external or internal) to shortening, sub grade settlement, and applied loads or can also be caused by freezing and thawing of saturated concrete, alkali- aggregate reactivity, sulphate attack, or corrosion of reinforcing steel. So, there is a need for the development of such an inherent biomaterial, which is a self-repairing material and can remediate the cracks and fissures in concrete. Bacterial concrete is one among such a material, which can successfully remediate cracks in concrete. This technique is an ecofriendly desirable as well as a natural method that can be taken into consideration in recent concrete industry era. The Paper discusses the comparative study of concrete self healing capability using different types of bacteria viz Bacillus Sphacricus, B. Cohnii. Hence this is a Biological Remediation of cracks repairment.
An earthquake is a sudden violent shaking of the ground. Many aseismic construction designs and technologies have been developed over the years in attempts to mitigate the effects of earthquakes on buildings, bridges and potentially vulnerable contents. Seismic Isolation is a relatively recent, and evolving, technology of this kind. Though the concept of base isolation as a means of earthquake protection is more than 100-years old, its application to civil engineering structures is relatively new, and the base isolation research is pursued in India only for the last twenty years. This paper introduces the concept of Natural rubber base-isolators for the seismic (earthquake) resistance of Reinforced Concrete (RC) – framed buildings. The design of base isolators is explained with an objective to bring awareness and confidence in structural engineers in India for use of this technique in seismic areas. In addition, an analytical study is carried out to validate the effectiveness of base isolators in RC structures using SAP2000 NL.
Establishment and maintenance of a hydrometric network in any geographical region is required for planning, design and management of water resources. Setting up and maintaining a hydrometric network is an evolutionary process, wherein a network is established early in the development of the geographical area; and the network reviewed and upgraded periodically to arrive at the optimum network. This paper presents the methodology adopted in assessing the hydrometric network using entropy theory adopting normal and log-normal probability distributions. The technique, involving computation of marginal and conditional entropy values, is applied to the upper Bhima basin up to Ujjani reservoir for illustrative purposes; and results presented. The derived optimum hydrometric network for the basin is evaluated based on WMO guidelines for minimum density of hydrometric network.