* Research Scholar, Structural Engineering, IIT (BHU) Varanasi, India.

** Associate Professor, Civil Engineering, IIT (BHU) Varanasi, India.

*** Associate Professor, Civil Engineering, IIT (BHU) Varanasi, India.

Relative stiffness of beam and column plays an important role in design and analysis of any building. This paper presents the effect of varying stiffness in terms of cross section and moment of area of beam and column, and on shear lag phenomenon. Variation of axial force in the column is affected by the variation of stiffness of beam as well as column. It has been observed that the beam stiffness has more significant impact on the variation of the axial force and base bending moment of the tubular buildings. This impact of the beam stiffness may be understood in the terms of additional bending moment which is generated in the flange panel of the tubular buildings. Effect of increasing column stiffness has increased base bending moment in both flange and web columns due to increased rigidity of the building.

[1]. Chan, P. C. K., Tso, W. K., and Heidebrecht, A. C.
(1974). “Effect of normal frames on the shear walls.” Building Sci., Vol. 9, pp.197-209

[2]. Chang, P.C. (1984). “Analytical modeling of tube-intube
structure.” J. Struct. Engrg., ASCE, Vol.111(6), pp.1326-
1337.

[3]. Chang, S. T., and Gang, J. Z. (1990). “Analysis of
cantilever decks of thin-walled box girder bridges.” J. Struct.
Engrg., ASCE, Vol.116(9), pp.2410-2418.

[4]. Chang, S. T., and Zheng, F. Z. (1987). “Negative shear
lag in cantilever box girder with constant depth.” J. Struct.
Engrg., ASCE, Vol.113(1), pp.20-35.

[5]. Cheung, M. S., and Chan, M. Y. T. (1978). “Finite strip
evaluation of effective flange width of bridge girders.” Can.
J. Civ. Eng., Vol.5(2), pp.174-185.

[6]. Cheung, M. S., and Cheung, Y. K. (1971). “Analysis of
curved box girder bridges by the finite-strip method.”
International Association for Bridges and Structural
Engineering (IABSE), Vol.31(I), pp.1-8.

[7]. Cook, R. D. (1991). “Pure bending of curved beams of
thin-walled rectangular box section.” J. Appl. Mech.,
Vol.58(1), pp.154-156.

[8]. Coull, A. and Bose, B. (1976). “Torsion of Frame–Tube
Structures.” J. Struct. Div., ASCE, Vol.102(12), pp.2366-2370.

[9]. Coull, A. and Ahmed, A. A. (1978). “Deflections of
Frame-Tube Structures.” J. Struct. Div., ASCE, Vol.104(5),
pp.857-862.

[10]. Coull, A. and Bose, B. (1975). “Simplified Analysis of
Frame – Tube Structures.” J. Struct. Div., ASCE, Vol.101(11),
pp.2223-2240.

[11]. Cusens, A. R., and Loo, Y. C. (1974). “Application of the
finite-strip method in the analysis of concrete box bridges.”
Proc., Inst. Civ. Eng., London, Vol.57(2), pp.251-273.

[12]. Evans, H. R., and Shanmugam, N. E., (1984).
“Simplified analysis for cellular structures.” J. Struct. Div.,
ASCE, Vol.110(3), pp.531-543.

[13]. Foutch, D. A. and Chang, P. C. (1982). “A Shear Lag
Anomaly.” J. Struct. Eng., Vol.108(7), ASCE, Vol.108(7),
pp.1653-1658.

[14]. Ha, K. H., Fazio, P. and Moselhi, O. (1978). “Orthotropic
Membrane for Tall Building Analysis.” J. Struct. Div., ASCE,
Vol.104(9), pp.1495-1505.

[15]. Haji–Kazemi, H. and Company, M. (2002).“Exact
method of analysis of shear lag in framed tube structures.”
The structural design of tall buildings, Vol.11, pp.375-388.

[16]. Hambly, E. C., and Pennells, E. (1975). “Grillage
analysis applied to cellular bridge decks.” Struct. Eng.,
Vol.53(7), pp.267-275.

[17]. Khan, A. H. and Stafford Smith, B. (1976). “A simple
method of analysis for deflection and stresses in wall- frame
structures.” Building and Envir., Vol. 11, pp.69-78.

[18]. Kuzmanovic, B.O. and Graham H. J. (1981). “Shear
lag in box girders.” J. Struct. Engrg., ASCE, Vol.107, No.ST9,
pp.1701-1712.

[19]. Kwan, A. K. H., (1994). “Simple method for
approximate analysis of framed tube structures.” J.of
Struct. Eng., ASCE, Vol.120(4), pp.1221-1239.

[20]. Lee, K. K., Guan, H., and Loo, Y. C. (2000). “Simplified
analysis of shear-lag in framed-tube structures with multiple
internal tubes.” Computational Mechanics, Vol.26,
pp.447-458.

[21]. Lee, K. K., Loo, Y. C., and Guan, H. (2001). “Simple
analysis of framed-tube structures with multiple internal
tubes.” J. Struct. Engrg., ASCE, Vol.127, pp.450-460.

[22]. Li, W. Y., Tham, L. G., and Cheung, Y. K. (1988).
“Curved box-girder bridges.” J. Struct. Eng., ASCE
Vol.114(6), pp.1324-1338.

[23]. Lin, Z., and Zhao, J. (2011). “Revisit of AASHTO effective
flange-width provisions for box girders.” Journal of Bridge
Engineering, ASCE, Vol.16(6), pp.881-889.

[24]. Mahjoub, R., Rahgozar, R., and Saffari, H. (2011).
“Simple Method for Analysis of Tube Frame by
consideration of negative shear lag.” Australian Journal of
Basic and Applied Sciences, Vol.5(3), pp.309-316.

[25]. Meyer, C., and Scordelis, A. C. (1971). “Analysis of
curved folded plate structures.” J. Struct. Div., Vol.97(10),
pp.2459-2480.

[26]. Moffatt, K. R., and Dowling, P. J. (1975). “Shear lag in
steel box girder bridges”, Struct. Eng., Vol.53(10), pp.439-
448.

[27]. Reissner, E. (1945). “Analysis of shear lag in box beam
by the principle of minimum potential energy.” Quarterly Applied Mathematics, Vol.4(3), pp.268 – 278.

[28]. Sennah, K. M., and Kennedy, J. B. (2002). “Literature
review in analysis of box girder bridge”, Journal of Bridge
Engineering, Vol.7(2), pp.134-143.

[29]. Shang-min, Z., and Shui, W. (2014). “Finite element
analysis of shear lag effect on composite girder with
steel truss webs'”, J. Highway Transp. Res. Dev. (English Ed.),
Vol.8(3), pp.70-75.

[30]. Shushkewich, K. W. (1988). “Approximate analysis of
concrete box girder bridge.” J. Struct. Eng., Vol.114(7),
pp.1644-1657.

[31]. Shushkewich, K.W. (1991). “Negative shear lag
explained”, J. Struct. Engrg., ASCE, Vol.117(11), pp.3543-
3545.

[32]. Singh, G. J., Mandal, S., and Kumar, R. (2013). “Effect
of column location on plan of multi- story building on shear
lag phenomenon.” Proc. of the 8th Asia-Pacific
Conference on Wind Engineering (APCWE-VIII), Chennai,
India, pp.978–981.