Effect of Relative Stiffness of Beam and Column on the Shear Lag Phenomenon in Tubular Buildings

G. J. Singh*, S. Mandal**, Rajesh Kumar***
* Research Scholar, Structural Engineering, IIT (BHU) Varanasi, India.
** Associate Professor, Civil Engineering, IIT (BHU) Varanasi, India.
*** Associate Professor, Civil Engineering, IIT (BHU) Varanasi, India.
DOI : https://doi.org/

Abstract

Relative stiffness of beam and column plays an important role in design and analysis of any building. This paper presents the effect of varying stiffness in terms of cross section and moment of area of beam and column, and on shear lag phenomenon. Variation of axial force in the column is affected by the variation of stiffness of beam as well as column. It has been observed that the beam stiffness has more significant impact on the variation of the axial force and base bending moment of the tubular buildings. This impact of the beam stiffness may be understood in the terms of additional bending moment which is generated in the flange panel of the tubular buildings. Effect of increasing column stiffness has increased base bending moment in both flange and web columns due to increased rigidity of the building.

Keywords

Keywords: Tubular Buildings, Relative Stiffness of Beams and Columns, Base Bending Moment, Shear Lag Phenomenon and Lateral Drift.

How to Cite this Article?

Singh, G.J., Mandal, S., Kumar, R. (2015). Effect of Relative Stiffness of Beam and Column on the Shear Lag Phenomenon in Tubular Buildings. i-manager’s Journal on Structural Engineering, 4(1), 32-38.

References

[1]. Chan, P. C. K., Tso, W. K., and Heidebrecht, A. C. (1974). “Effect of normal frames on the shear walls.” Building Sci., Vol. 9, pp.197-209
[2]. Chang, P.C. (1984). “Analytical modeling of tube-intube structure.” J. Struct. Engrg., ASCE, Vol.111(6), pp.1326- 1337.
[3]. Chang, S. T., and Gang, J. Z. (1990). “Analysis of cantilever decks of thin-walled box girder bridges.” J. Struct. Engrg., ASCE, Vol.116(9), pp.2410-2418.
[4]. Chang, S. T., and Zheng, F. Z. (1987). “Negative shear lag in cantilever box girder with constant depth.” J. Struct. Engrg., ASCE, Vol.113(1), pp.20-35.
[5]. Cheung, M. S., and Chan, M. Y. T. (1978). “Finite strip evaluation of effective flange width of bridge girders.” Can. J. Civ. Eng., Vol.5(2), pp.174-185.
[6]. Cheung, M. S., and Cheung, Y. K. (1971). “Analysis of curved box girder bridges by the finite-strip method.” International Association for Bridges and Structural Engineering (IABSE), Vol.31(I), pp.1-8.
[7]. Cook, R. D. (1991). “Pure bending of curved beams of thin-walled rectangular box section.” J. Appl. Mech., Vol.58(1), pp.154-156.
[8]. Coull, A. and Bose, B. (1976). “Torsion of Frame–Tube Structures.” J. Struct. Div., ASCE, Vol.102(12), pp.2366-2370.
[9]. Coull, A. and Ahmed, A. A. (1978). “Deflections of Frame-Tube Structures.” J. Struct. Div., ASCE, Vol.104(5), pp.857-862.
[10]. Coull, A. and Bose, B. (1975). “Simplified Analysis of Frame – Tube Structures.” J. Struct. Div., ASCE, Vol.101(11), pp.2223-2240.
[11]. Cusens, A. R., and Loo, Y. C. (1974). “Application of the finite-strip method in the analysis of concrete box bridges.” Proc., Inst. Civ. Eng., London, Vol.57(2), pp.251-273.
[12]. Evans, H. R., and Shanmugam, N. E., (1984). “Simplified analysis for cellular structures.” J. Struct. Div., ASCE, Vol.110(3), pp.531-543.
[13]. Foutch, D. A. and Chang, P. C. (1982). “A Shear Lag Anomaly.” J. Struct. Eng., Vol.108(7), ASCE, Vol.108(7), pp.1653-1658.
[14]. Ha, K. H., Fazio, P. and Moselhi, O. (1978). “Orthotropic Membrane for Tall Building Analysis.” J. Struct. Div., ASCE, Vol.104(9), pp.1495-1505.
[15]. Haji–Kazemi, H. and Company, M. (2002).“Exact method of analysis of shear lag in framed tube structures.” The structural design of tall buildings, Vol.11, pp.375-388.
[16]. Hambly, E. C., and Pennells, E. (1975). “Grillage analysis applied to cellular bridge decks.” Struct. Eng., Vol.53(7), pp.267-275.
[17]. Khan, A. H. and Stafford Smith, B. (1976). “A simple method of analysis for deflection and stresses in wall- frame structures.” Building and Envir., Vol. 11, pp.69-78.
[18]. Kuzmanovic, B.O. and Graham H. J. (1981). “Shear lag in box girders.” J. Struct. Engrg., ASCE, Vol.107, No.ST9, pp.1701-1712.
[19]. Kwan, A. K. H., (1994). “Simple method for approximate analysis of framed tube structures.” J.of Struct. Eng., ASCE, Vol.120(4), pp.1221-1239.
[20]. Lee, K. K., Guan, H., and Loo, Y. C. (2000). “Simplified analysis of shear-lag in framed-tube structures with multiple internal tubes.” Computational Mechanics, Vol.26, pp.447-458.
[21]. Lee, K. K., Loo, Y. C., and Guan, H. (2001). “Simple analysis of framed-tube structures with multiple internal tubes.” J. Struct. Engrg., ASCE, Vol.127, pp.450-460.
[22]. Li, W. Y., Tham, L. G., and Cheung, Y. K. (1988). “Curved box-girder bridges.” J. Struct. Eng., ASCE Vol.114(6), pp.1324-1338.
[23]. Lin, Z., and Zhao, J. (2011). “Revisit of AASHTO effective flange-width provisions for box girders.” Journal of Bridge Engineering, ASCE, Vol.16(6), pp.881-889.
[24]. Mahjoub, R., Rahgozar, R., and Saffari, H. (2011). “Simple Method for Analysis of Tube Frame by consideration of negative shear lag.” Australian Journal of Basic and Applied Sciences, Vol.5(3), pp.309-316.
[25]. Meyer, C., and Scordelis, A. C. (1971). “Analysis of curved folded plate structures.” J. Struct. Div., Vol.97(10), pp.2459-2480.
[26]. Moffatt, K. R., and Dowling, P. J. (1975). “Shear lag in steel box girder bridges”, Struct. Eng., Vol.53(10), pp.439- 448.
[27]. Reissner, E. (1945). “Analysis of shear lag in box beam by the principle of minimum potential energy.” Quarterly Applied Mathematics, Vol.4(3), pp.268 – 278.
[28]. Sennah, K. M., and Kennedy, J. B. (2002). “Literature review in analysis of box girder bridge”, Journal of Bridge Engineering, Vol.7(2), pp.134-143.
[29]. Shang-min, Z., and Shui, W. (2014). “Finite element analysis of shear lag effect on composite girder with steel truss webs'”, J. Highway Transp. Res. Dev. (English Ed.), Vol.8(3), pp.70-75.
[30]. Shushkewich, K. W. (1988). “Approximate analysis of concrete box girder bridge.” J. Struct. Eng., Vol.114(7), pp.1644-1657.
[31]. Shushkewich, K.W. (1991). “Negative shear lag explained”, J. Struct. Engrg., ASCE, Vol.117(11), pp.3543- 3545.
[32]. Singh, G. J., Mandal, S., and Kumar, R. (2013). “Effect of column location on plan of multi- story building on shear lag phenomenon.” Proc. of the 8th Asia-Pacific Conference on Wind Engineering (APCWE-VIII), Chennai, India, pp.978–981.
If you have access to this article please login to view the article or kindly login to purchase the article
Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.

Purchase Instant Access

Single Article

USD EUR INR
Print 35 35 200
Online 35 35 200
Print & Online 35 35 400