Thermodynamic and Exergoeconomic Operation Optimization and Simulation of Steam Generation Solar Power Plant
Topology Transformation Approach for Optimal PMU Placement for Monitoring and Control of Power System
Performance Evaluation of Power System with HVDC Integration: Impact of SSSC and STATCOM on Power System Efficiency and Stability
Photovoltaic Systems: A Pollination-Based Optimization Approach for Critical Industrial Applications
Design of a Robust Controller for the Load Frequency Control of Interconnected Power System
Multi Area Load Frequency Control of a Hybrid Power System with Advanced Machine Learning Controller: Case Study of Andhra Pradesh
A New Hybrid Cuckoo Search-Artificial Bee Colony Approach for Optimal Placing of UPFC Considering Contingencies
Efficiency and Investment Comparison of Monocrystalline, Polycrystalline, and Thin Film Solar Panel Types at Karabuk Conditions
Design of a Grid Connected PV System and Effect of Various Parameters on Energy Generation
Comparative Analysis of Harmonics by Shunt Active Filter using Resonant Current Control in Distribution System
Optimal Distributed Generation Placement for Maximum Loss Reduction using Teaching Learning Based Optimization through Matlab GUI
Development of Power Flow Controller for Grid Connected Renewable Energy Sources Using Lyapunov function
Detection and Location of Faults in Three Phase 11kv Underground Power Cables By Discrete Wavelet Transform (DWT)
Design of PV-Wind Hybrid Micro-Grid System for Domestic Loading
Applications of Artificial Neural Networks in various areas of Power System; A Review
The present work deals with five level reduced device count multilevel inverter topology for a single-phase standalone solar photovoltaic based power generation system. The essential switching design presented here is used to reduce the selective lower order harmonics from the output voltage. The DC-DC voltage regulator is used to obtain stable DC output from standalone solar photovoltaic system for which the Perturb and Observe algorithm has been used to obtain maximum power operating point technique (MPPT). The complete control technique has been explained with the help of different modes of operation for five level output voltage with only six Insulated Gate Bipolar Transistor and two diodes to extract maximum amount of solar photovoltaic energy to increase fundamental output voltage with minimum harmonic contents. The performance of presented system has been simulated and tested in MATLAB simulation environment. The analysis of harmonic content in the output voltage and current has been carried out for the system under test.
Electricity is one in all the basic requirements of every person that is often used for industrial, domestic, and agricultural utilities. Proper billing with monitoring is essential for better energy optimization. Power burglary is that the biggest problem in present days that causes loss of electricity boards. This paper presents an Internet of Things (IoT) based smart bidirectional meter for automatic reading and billing system with Grid connected or islanding mode of smart grid having integrated renewable energies with the facility of prepaid and postpaid mode. This paper also describes how faults are detected with its position, without Global Positioning System (GPS). When a user consumes more than applied energy then this smart device interrupt the power and send the corresponding data to the server. This study used ATmega328pu as a primary microcontroller and ESP8266-12E for sending and receiving the data from the server.
In traditional system, power from battery us discharged through resistors resulting in energy wasted in the form of I2R loss. Traditional batteries are uni-directional therefore bi-directional converters are necessary in order to reverse the power flow and reuse the energy through regenerative mode. In this paper, battery integrated with proposed high voltage DC gain bi-directional isolated converter for charging and discharging purpose are discussed in a 400V DC Microgrid. Bidirectional Converters (BDC) are used in various applications like DC Microgrid for energy storage, Extra High Volt (EHV) and uninterrupted power flow. This isolated BDC has various advantages like high voltage, high gain, highly efficient, reliable, reduce loss in soft switching, simple circuit, utilizing energy efficiently, etc. The converter circuit is designed by using four Insulated Gate Bipolar Transistor (IGBT) switches, four capacitors, two inductors and one transformer. Simulation is done by using MATLAB/SIMULINK software and results are verified and discussed in this paper.
This paper investigates the combined operation of simulation and hardware based smart grid technology in small scale system. The proposed system can efficiently control the voltage sag, swell, flicker, neutral current, harmonics, active and reactive power by using powerful custom power devices such as Dynamic Voltage Restorer (DVR), Static Compensator (STATCOM) and Unified Power Quality Conditioner (UPQC) with Diesel generator (DG) and Storage system. Because of rising population, industry transportation and the demand of energy is increasing day by day. Our electrical grid is intended to control in pure sine wave except for unpredictable load unbalancing and power electronics switching injects the non-linearity to the system. The proposed system also described the integrated smart grid with distributed renewable energies and power quality improvement using inducverters techniques with smart bi-directional controls based on IoT. The various simulation results are executed and supported by suitable hardware experiments for verification of the proposed model which provide satisfactory results.
Electrical energy is transmitted through the electrical network from power generating stations to the consumers. For this purpose, the overhead transmission line is used through which bulk power can be transferred. The conventional electrical network transmits the energy with power loss. The reason for the power loss is due to corona discharge, which affects the performance of the transmission line. Due to the above reason this paper analyzed the corona loss with modeling of AC transmission line by using MATLAB software and also tested different factors which affect the corona in different weather (fair and stormy) conditions by using Peek's formula.