Survey on Systems Architecture for Internet of Things (IoT)

Hiren Dutta*, Parama Bhaumik **
*-** Department of Information Technology, Jadavpur University, Kolkata, West Bengal, India.
Periodicity:July - September'2020


With the increasing number of Industrial Internet of Things (IIoT) entities which are growing exponentially, management of entire IoT communication and systems become a core area of research over the years. With the multiple dimensions like size, processing power, storage and applications, ranges of these IoT devices varies significantly. Such smart devices today are having capabilities to collect, process and take real time decisions without any human interaction. That is why single reference communication architecture is not very suitable for wide ranges of industrial applications. This survey paper is focused on categorical research of existing work and map them into the to-be reference layered IIoT architecture, which can be balanced based on the need of the application and its usage. This paper also describes the potential research issues within IoT architecture, communication and data management space.


Internet of Things, IoT Architecture, Layered IoT, IoT Identity, IoT Data Management, IoT Research Issues.

How to Cite this Article?

Dutta, H., and Bhaumik, P. (2020). Survey on Systems Architecture for Internet of Things (IoT). i-manager's Journal on Software Engineering, 15(1), 23-39.


[1]. Adegbija, T., Lysecky, R., & Kumar, V. V. (2019, May). Right-provisioned IoT edge computing: An overview. In Proceedings of the 2019 on Great Lakes Symposium on VLSI (pp. 531-536). 338
[2]. Akkermans, S., Small, N., Joosen, W., & Hughes, D. (2017, November). Niflheim: End-to-end middleware for applications across all tiers of the IoT. In Proceedings of the th 15 ACM Conference on Embedded Network Sensor Systems (pp. 1-2).
[3]. Alagiannis, I., Borovica, R., Branco, M., Idreos, S., & Ailamaki, A. (2012). NoDB in action: Adaptive query processing on raw data. Proceedings of the VLDB Endowment, 5(12), 1942-1945.
[4]. Alam, M., Rufino, J., Ferreira, J., Ahmed, S. H., Shah, N., & Chen, Y. (2018). Orchestration of microservices for IoT using docker and edge computing. IEEE Communications Magazine, 56(9), 118-123. M.2018.1701233
[5]. Atonomi LLC. (n.d.). Atonomi: For trusted IoT [White Paper]. Retrieved from 5b95e56c7572f5c98b3993d9/5bb701dfc2defc245cd 39d01_Atonomi-White-Paper-v0.9.4a.pdf
[6]. Bhawiyuga, A., Data, M., & Warda, A. (2017, October). Architectural design of token based authentication of th MQTT protocol in constrained IoT device. In 2017 11 International Conference on Telecommunication Systems Services and Applications (TSSA) (pp. 1-4). IEEE.
[7]. Butzin, B., Golatowski, F., & Timmermann, D. (2016, September). Microservices approach for the internet of st things. In 2016 IEEE 21 International Conference on Emerging Technologies and Factory Automation (ETFA) (pp. 1-6). IEEE.
[8]. Carnevale, L., Celesti, A., Galletta, A., Dustdar, S., & Villari, M. (2019). Osmotic computing as a distributed multi-agent system: The body area network scenario. Internet of Things, 5, 130-139. t.2019.01.001
[9]. Chen, B., Eck, B., Fusco, F., Gormally, R., Purcell, M., Sinn, M., & Tirupathi, S. (2018, November). Castor: Contextual IoT time series data and model management at scale. In 2018 IEEE International Conference on Data Mining Workshops (ICDMW) (pp. 1487-1492). IEEE.
[10]. Chris, R. (2016). Refactoring a monolith into microservices. NGINX. Retrieved from https://www.nginx. com/blog/refactoring-amonolith-into-microservices/
[11]. Claeys, T., Rousseau, F., & Tourancheau, B. (2017, September). Securing complex IoT platforms with token based access control and authenticated key establishment. In 2017 International Workshop on Secure Internet of Things (SIoT) (pp. 1-9). IEEE. 09/SIoT.2017.00006
[12]. Costa, L. C., Rabaey, J., Wolisz, A., Rosan, M., & Zuffo, M. K. (2015). Swarm os control plane: an architecture proposal for heterogeneous and organic networks. IEEE Transactions on Consumer Electronics, 61(4), 454-462.
[13]. da Cruz, M. A., Rodrigues, J. J. P., Al-Muhtadi, J., Korotaev, V. V., & de Albuquerque, V. H. C. (2018). A reference model for internet of things middleware. IEEE Internet of Things Journal, 5(2), 871-883. 0.1109/JIOT.2018.2796561
[14]. De Biase, L. C., Ccori, P. C., Corazza, G., Guinezi, M., Fedrecheski, G., & Zuffo, M. K. (2019, January). Swarm assistant: An intelligent personal assistant for the swarm. In 2019 IEEE International Conference on Consumer Electronics (ICCE) (pp. 1-2). IEEE. /ICCE.2019.8662010
[15]. de Santana, C. J. L., de Mello Alencar, B., & Prazeres, C. V. S. (2019, April). Reactive microservices for the internet of things: A case study in fog computing. In Proceedings of th the 34 ACM/SIGAPP Symposium on Applied Computing (pp. 1243-1251). 297402
[16]. Di Martino, S., Fiadone, L., Peron, A., Riccabone, A., & Vitale, V. N. (2019, June). Industrial Internet of Things: persistence for time series with NoSQL databases. In 2019 th IEEE 28 International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE) (pp. 340-345). IEEE. E.2019.00076
[17]. Egham, U. K. (2017). Gartner says 8.4 billion connected "Things" will be in use in 2017, up 31 percent from 2016 [Press Release]. Retrieved from https://www.
[18]. El-Hajj, M., Fadlallah, A., Chamoun, M., & Serhrouchni, A. (2019). A survey of internet of things (IoT) authentication schemes. Sensors, 19(5), 1-43. https://do
[19]. Fuller, A., Fan, Z., Day, C., & Barlow, C. (2020). Digital twin: Enabling technologies, challenges and open research. IEEE Access, 8, 108952-108971. https://doi.or g/10.1109/ACCESS.2020.2998358
[20]. Fulton III, S. M. (2015). What led amazon to its own microservices architecture. Retrieved from https://thenew
[21]. Ge, X., Zhu, H., Wang, C., Yuan, Z., & Zhu, Y. (2019, March). Design and implementation of reactive distributed internet of things platform based on actor rd model. In 2019 IEEE 3 Information Technology, Networking, Electronic and Automation Control Conference (ITNEC) (pp. 1993-1996). IEEE. 9169
[22]. GGómez-Berbís, J. M., & de Amescua-Seco, A. (2019, December). SEDIT: Semantic digital twin based on industrial IoT data management and knowledge graphs. In International Conference on Technologies and Innovation (pp. 178-188). Cham: Springer. 8-3-030-34989-9_14
[23]. Girma, A., Bahadori, N., Sarkar, M., Tadewos, T. G., Behnia, M. R., Mahmoud, M. N., ... & Homaifar, A. (2020). IoT-enabled autonomous system collaboration for disaster-area management. IEEE/CAA Journal of Automatica Sinica, 7(5), 1249-1262. 109/JAS.2020.1003291
[24]. Gupta, H., Xu, Z., & Ramachandran, U. (2018). Datafog: Towards a holistic data management platform for the iot age at the network edge. In Workshop on Hot Topics in Edge Computing (HotEdge 18). Retrieved from sentation/gupta
[25]. Hammi, M. T., Hammi, B., Bellot, P., & Serhrouchni, A. (2018). Bubbles of trust: A decentralized blockchain-based authentication system for IoT. Computers & Security, 78, 126-142.
[26]. Hanada, Y., Hsiao, L., & Levis, P. (2018, November). Smart contracts for machine-to-machine communication: Possibilities and limitations. In 2018 IEEE International Conference on Internet of Things and Intelligence System (IOTAIS) (pp. 130-136). IEEE. 2018.8600854
[27]. Karanjkar, N., Joglekar, A., Mohanty, S., Prabhu, V., Raghunath, D., & Sundaresan, R. (2018, November). Digital twin for energy optimization in an SMT-PCB assembly line. In 2018 IEEE International Conference on Internet of Things and Intelligence System (IOTAIS) (pp. 85-89). IEEE.
[28]. Kim, G., Kang, S., Park, J., & Chung, K. (2019). An MQTT-based context-aware autonomous system in oneM2M architecture. IEEE Internet of Things Journal, 6(5), 8519-8528.
[29]. Kumar, P. M., Manogaran, G., Sundarasekar, R., Chilamkurti, N., & Varatharajan, R. (2018). Ant colony optimization algorithm with internet of vehicles for intelligent traffic control system. Computer Networks, 144, 154-162.
[30]. Kumar, R. N. V., & Kumar, M. P. (2020). Survey on state of art IoT protocols and applications. IEEE International Conference on Computational Intelligence for Smart Power System and Sustainable Energy (CISPSSE-2020).
[31]. Lee, J., Yu, S., Park, K., Park, Y., & Park, Y. (2019). Secure three-factor authentication protocol for multigateway IoT environments. Sensors, 19(10), 1-25.
[32]. Lu, Y., Liu, C., Kevin, I., Wang, K., Huang, H., & Xu, X. (2020). Digital Twin-driven smart manufacturing: Connotation, reference model, applications and research issues. Robotics and Computer-Integrated Manufacturing, 61, 1-14.
[33]. Mach, P., & Becvar, Z. (2017). Mobile edge computing: A survey on architecture and computation offloading. IEEE Communications Surveys & Tutorials, 19(3), 1628-1656.
[34]. Makarov, V. V., Frolov, Y. B., Parshina, I. S., & Ushakova, M. V. (2019). The design concept of digital twin. In 2019 Twelfth International Conference on Management of Largescale System Development (MLSD) (pp. 1-4). 109/MLSD.2019.8911091
[35]. Marchal, S., Miettinen, M., Nguyen, T. D., Sadeghi, A. R., & Asokan, N. (2019). AuDI: Toward autonomous iot device-type identification using periodic communication. IEEE Journal on Selected Areas in Communications, 37(6), 1402-1412.
[36]. Martínez-Peláez, R., Toral-Cruz, H., Parra-Michel, J. R., García, V., Mena, L. J., Félix, V. G., & Ochoa-Brust, A. (2019). An enhanced lightweight IoT-based authentication scheme in cloud computing circumstances. Sensors, 19(9), 1-22.
[37]. Meierhofer, J., & West, S. (2019, June). Service value creation using a digital twin. In Naples Forum on Service, Service Dominant Logic, Network & Systems Theory and Service Science: Integrating Three Perspectives for a New Service Agenda (pp. 4-7).
[38]. Mendez Mena, D. M., & Yang, B. (2018, September). Blockchain-based whitelisting for consumer IoT devices th and home networks. In Proceedings of the 19 Annual SIG Conference on Information Technology Education (pp. 7- 12).
[39]. Mocnej, J., Seah, W. K., Pekar, A., & Zolotova, I. (2018). Decentralised IoT architecture for efficient resources utilization. IFAC-Papers Online, 51(6), 168-173.
[40]. Naqvi, S. N. Z., Yfantidou, S., & Zimányi, E. (2017). Time series databases and influxdb. Université Libre de Bruxelles. Retrieved from media/teaching/influxdb_2017.pdf
[41]. Nolan, M., McGrath, M. J., Spoczynski, M., & Healy, D. (2019, April). Adaptive industrial IoT/CPS messaging strategies for improved edge compute utility. In Proceedings of the Workshop on Fog Computing and the IoT (pp. 16-20).
[42]. Pant, T. (2019). Ingesting IoT and sensor data at scale. Retrieved from ingesting-iot-and-sensor-data-at-scale-ee548e 0f8b78
[43]. Patel, M., & Bhise, M. (2019, January). Raw data th processing framework for IoT. In 2019 11 International Conference on Communication Systems & Networks (COMSNETS) (pp. 695-699). IEEE. COMSNETS.2019.8711408
[44]. Pettey, C. ( 2018). How IoT impacts data and analytics. Retrieved from withgartner/how-iot-impacts-data-and-analytics/
[45]. Peyrott, S. (2017). JWT Handbook. Retrieved from Handbook
[46]. Pillai, A. S., Chandraprasad, G. S., Khwaja, A. S., & Anpalagan, A. (2019). A service oriented IoT architecture for disaster preparedness and forecasting system. Internet of Things, 1-13.
[47]. Ray, P. P. (2018). A survey on Internet of Things architectures. Journal of King Saud University-Computer and Information Sciences, 30(3), 291-319. https://doi.or g/10.1016/j.jksuci.2016.10.003
[48]. Richardson, C. (2011). Pattern: Microservice chassis. Retrieved from vice-chassis.html
[49]. Romanov, E. L., & Troshina, G. V. (2017, September). The IoT-architecture on the principles of reactive programming. In 2017 International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON) (pp. 317-322). IEEE. IRCON.2017.8109897
[50]. Santamaria, A. F., Raimondo, P., Tropea, M., De Rango, F., & Aiello, C. (2019). An IoT surveillance system based on a decentralized architecture. Sensors, 19(6), 1- 23.
[51]. Siow, E., Tiropanis, T., Wang, X., & Hall, W. (2018). TritanDB: Time-series rapid internet of things analytics. Retrieved from
[52]. Sivaraman, V., Gharakheili, H. H., Vishwanath, A., Boreli, R., & Mehani, O. (2015, October). Network-level security and privacy control for smart-home IoT devices. In th 2015 IEEE 11 International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob) (pp. 163-167). IEEE. B.2015.7347956
[53]. Smidt, H., Thornton, M., & Ghorbani, R. (2018, January). Smart application development for IoT asset management using graph database modeling and highst availability web services. In Proceedings of the 51 Hawaii International Conference on System Sciences. https://do
[54]. Souza, V., Cruz, R., Silva, W., Lins, S., & Lucena, V. (2019, January). A digital twin architecture based on the industrial internet of things technologies. In 2019 IEEE International Conference on Consumer Electronics (ICCE) (pp. 1-2). IEEE.
[55]. Spezzano, G. (2019). Swarm Robotics. Applied Sciences, 9(7), 1-3.
[56]. Tao, F., Qi, Q., Wang, L., & Nee, A. Y. C. (2019). Digital twins and cyber–physical systems toward smart manufacturing and industry 4.0: Correlation and comparison. Engineering, 5(4), 653-661. 10.1016/j.eng.2019.01.014
[57]. Villari, M., Fazio, M., Dustdar, S., Rana, O., & Ranjan, R. (2016). Osmotic computing: A new paradigm for edge/cloud integration. IEEE Cloud Computing, 3(6), 76- 83.
[58]. Wang, D., Lee, S., Zhu, Y., & Li, Y. (2017, March). A zero human-intervention provisioning for industrial IoT devices. In 2017 IEEE International Conference on Industrial Technology (ICIT) (pp. 1271-1276). IEEE. 0.1109/ICIT.2017.7915546
[59]. Yu, R., Kilari, V. T., Xue, G., & Yang, D. (2019a, April). Load balancing for interdependent IoT microservices. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 298-306). IEEE. 0.1109/INFOCOM.2019.8737450
[60]. Yu, S., Park, K., & Park, Y. (2019b). A secure lightweight three-factor authentication scheme for IoT in cloud computing environment. Sensors, 19(16), 1-20. https://doi. org/10.3390/s19163598
[61]. Yu, W., Dillon, T., Mostafa, F., Rahayu, W., & Liu, Y. (2019c). A global manufacturing big data ecosystem for fault detection in predictive maintenance. IEEE Transactions on Industrial Informatics, 16(1), 183-192.

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

If you have access to this article please login to view the article or kindly login to purchase the article
Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.