Some coupled fixed point theorems in M- fuzzy metric spaces using the common (E.A) property

0*, Shailesh Dhar Diwan**
* Senior Assistant Professor, Department of Mathematics, Shri Shankaracharya Institute of Prof. Mgmt. and Tech., Raipur (C.G.), India.
** Associate Professor, Department of Mathematics, Government Engineering College, Raipur (C.G.), India.
Periodicity:October - December'2016
DOI : https://doi.org/10.26634/jmat.5.4.8307

Abstract

In this paper, the authors have defined some properties in M-fuzzy metric spaces defined by Sedgi and Shobe [15] and they established some common coupled fixed point theorems in M-fuzzy metric space using an implicit relation. They defined the notion of (E.A.) property and common (E.A.) property for the pair of mappings defined in — fuzzy metric space. The obtained results extend, generalize, and improve several results of D - metric spaces defined by Dhage [3] and metric spaces to generalized fuzzy metric spaces or M-fuzzy metric spaces.

Keywords

M-Fuzzy Metric Spaces, T-Norm, Weakly Commuting Mappings, (E.A.) Property, Common (E.A.) Property, Implicit Relation, Coupled Fixed Point.

How to Cite this Article?

Sharma, P., and Diwan, S.D. (2016). Some Coupled Fixed Point Theorems in M-Fuzzy Metric Spaces using the Common (E.A.) Property. i-manager’s Journal on Mathematics, 5(4), 20-29. https://doi.org/10.26634/jmat.5.4.8307

References

[1] Aamri M. and Moutawakil D. E., (2002). “Some new common fixed point theorems under strict contractive conditions”. Journal of Mathematical Analysis and Applications, Vol.270, No.1, pp.181-188.
[2]. Ali J., Imdad M., and Bahuguna D., (2010). “Common fixed point theorems in Menger spaces with common property (E.A.)”. Comput. Math. Appl., Vol.60, No.12, pp.3152-3159.
[3]. Dhage B. C., (1992). “Generalised metric spaces and mappings with fixed point”. Bull. Calcutt Math Soc., Vol.84, No.4, pp.329- 336.
[4]. George A., and Veeramani P., (1994). “On some results in Fuzzy Metric Spaces”. Fuzzy Sets and System, Vol.64, pp.395- 399.
[5]. Grabiec M., (1989). “Fixed points in fuzzy metric spaces”. Fuzzy Sets and Systems, Vol.27, pp.385-389.
[6]. Gregori V. and Sapena A., (2002). “On Fixed Point Theorem in Fuzzy Metric Spaces”. Fuzzy Sets and Systems, Vol.125, pp.245-252.
[7]. Jungck, G., (1976). “Commuting mappings and fixed points”. Amer. Math. Monthly, Vol.83, pp.261-263.
[8]. Jungck G., (1986). “Compatible mappings and common fixed points”. Internet. J. Math. Math. Sci., Vol.9, pp.771-779.
[9]. Jungck G. and Rhoades B.E., (2006). “Fixed point Theorems for occasionally weakly compatible mappings”. Fixed Point Theory, Vol.7, pp.286-296.
[10]. Kramosil O. and Michalek J., (1975). “Fuzzy Metric and statistical metric spaces”. Kybernetika, Vol.11, pp.326-334.
[11]. Mihet D., (2010). “Fixed point theorems in fuzzy metric spaces using property (E.A.)”. Nonlinear Anal. Vol.73, pp.2184- 2188.
[12]. Mishra S.N., (1991). “Common fixed points of compatible mappings in PM spaces”. Math. Japon., Vol.36, pp.283-289.
[13]. Pant R.P., (1994). “Common fixed points of non commuting mappings”. J. Math. Anal. Appl., Vol.188, No.2, pp.436-440.
[14]. Schweizer B. and Sclar A., (1960). “Statistical Metric space”. Pacific J. Math., pp.314-334.
[15]. Sedghi S. and Shobe N., (2007). “A common fixed point theorem in two m-fuzzy metric spaces”. Commun. Korean Math. Soc., Vol.22, No.4, pp.513-526.
[16]. Sessa S., (1986). “On a weak commutativity condition in a fixed point considation”. Publication of Inst. Mathematics, Vol.32, No.46, pp.149-153.
[17]. Vasuki R., (1999). “Common fixed points for R-weakly commuting maps in fuzzy metric spaces”. Indian J. Pure Appl. Math. Vol.30, pp.419-423.
[18]. Zadeh L.A., (1965). “Fuzzy sets”. Inform and Control, Vol.8, pp.338-353.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Online 15 15

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.