References
[1]. Tiku, M.L., (1967). “Estimating the Mean and Standard deviation from a Censored Normal Sample”. Biometrica, Vol.54,
pp.155-165.
[2]. Mehrotra, K.G., and Nanda, P., (1974). “Unbiased Estimation of Parameters by Order Statistics in the case of Censored
samples”. Biometrika, Vol.61, pp.601-606.
[3]. Pearson, E.S., and Rootzen, H. (1977). “Simple and Highly Efficient Estimators for a Type-I Censored Normal Sample”.
Biometrika, Vol.64, No.1, pp.123-128.
[4]. Rosaiah, K., Kantam, R.R.L., and Narasimham, V.L., (1993). “ML and Modified ML Estimation in Gamma Distribution with a
known Prior Relation among the parameters”. Pakistan Journal of Statistics, Vol.9, No.3B, pp.37-48.
[5]. Kantam, R.R.L., and Sriram, B., (2001). “Variable control charts based on Gamma distribution”. IAPQR Transactions,
Vol.26, No.2, pp.63-77.
[6]. Kantam, R.R.L., and Srinivasa Rao, G. (2002). “Log-Logistic Distribution: Modified Maximum Likelihood Estimation”.
Gujarat Statistical Review, Vol.29, No.1 & 2, pp.25-36.
[7]. Kantam and Sriram, (2003). “Maximum Likelihood Estimation from Censored Samples – Some Modifications in Length
Biased version of Exponential Model”. Statistical Methods, Vol.5, No.1, pp.63-78.
[8]. K. Rosaiah, and R.R.L. Kantam, (2005). “Acceptance Sampling based on the Inverse Rayleigh Distribution”. Economic
Quality Control, Vol.20, No.2, pp.277-286.
[9]. Kersey, and Jing Xiong, (2010). Weighted Inverse Weibull and Beta-Inverse Weibull Distribution (Doctoral Dissertations).
Retrieved from Digital Commons - Georgia Southern, 661.
[10]. R. Subba Rao, and R.R.L. Kantam, (2010). “Pareto Distribution- some methods of Estimation”. International Journal of
Computational Mathematical Ideas, Vol.2, No.1 & 2.
[11]. Gyan Prakash, (2011). “Bayes Shrinkage Minimax Estimation in Inverse Gaussian distribution”. Applied Mathematics,
No.2, pp.830-835.
[12]. B. Srinivasa Rao, J. Pratapa Reddy, and K. Rosaiah, (2012a). “Extreme value charts and ANOM based on Inverse
Rayleigh Distribution”. Pakistan Journal of Statistics and Operation Research, Vol.8, No.4, pp.759-766 .
[13]. G. Srinivasa Rao, R.R.L. Kantam, K. Rosaiah, and J. Pratapa Reddy, (2012b). “Acceptance Sampling Plans for
percentiles based on the Inverse Rayleigh Distribution”. Electron. J. App. Stat. Anal., Vol.5, No.2, pp.164-177.
[14]. Muhammad Qaiser Shahbaz, Saman Shahbaz, and Nadeem Shafique Butt, (2012). “The Kumaraswamy-Invere
Weibull Distribution”. Pak. J. Stat. Oper. Res. Vol.8, No.3, pp.479-489.
[15]. B.Vara Prasad Rao, K.Gangadhara Rao, and B. Srinivasa Rao, (2013). “Inverse Rayleigh Software Reliability Growth
Model”. International Journal of Computer Applications, Vol.75, No.6, pp.0975-8887.
[16]. B.Srinivasa Rao, R.R.L.Kantam, and J. Pratapa Reddy, (2013). “Variable Control Charts based on Inverse Rayleigh
Distribution”. Journal of Applied Probability and Statistics, Vol.8, No.1, pp.46-57.
[17]. Farhad Yahgmaei, Manoochehr Babanezhad, and Omid S. Moghadam, (2013). “Bayesian Estimation of the Scale
Parameter of Inverse Weibull Distribution under the Asymmetric Loss Functions”. Journal of Probability and Statistics, Vol.2013.
[18]. Jeremias Leao, Helton Saulo, Marcelo Bourguignon, Rematp Cintra, Leandro Rego, and Gauss Cordeiro, (2013). “On some properties of the Beta Inverse Rayleigh Distribution”. Chilean Journal of Statistics, Vol.4, No.2, pp.111-131.
[19]. Kantam, R.R.L., Priya, Ch., M., and Ravi Kumar, M.S., (2013). “Modified Maximum Likelihood Estimation in Linear Failure
Rate Distribuiton”. InterStat: Statistics on the Internet, Vol.7, No.6.
[20]. Kanchan Jain, Neetu Singla, and Suresh Kumar Sharma, (2014). “The Generalized Inverse Generalized Weibull
Distribution and Its Properties”. Journal of Probability, Vol.2014.
[21]. Kusum Lata Singh and R.S. Srivastava, (2014). “Inverse Maxwell Distribution as a Survival Model, Genesis and Parameter
Estimation”. Research Journal of Mathematical and Statistical Sciences, Vol.2, No.7, pp.23-28.
[22]. Muhammad Shuaib Khan, (2014). “Modified Inverse Rayleigh Distribution”. International Journal of Computer
Applications, Vol. 87, No.13, pp.0975-8887.
[23]. Pawan Kumar Srivastava, and R.S. Srivastava, (2014). “Two Parameter Inverse Chen Distribution as Survival Model”.
International Journal of Statistika and Mathematika, Vol.11.
[24]. Reza Azimi and Faramarz Azimi Sarikhanbaglu, (2014). “Bayesian Estimation for the Kumaraswamy-inverse Rayleigh
distributon based on progressive first failure censored samples”. International Journal of Scientific World, Vol.2, No.2, pp.42-
47.
[25]. Elbatal, Hiba Z, and Muhammed, (2014). “Exponentiated Generalised Inverse Weibull distribution”. Applied
Mathematical Sciences, Vol.8, No.81, pp.3997-4012.
[26]. Ibrahim Elbatal, Francesca Condino, and Filippo Domma, (2014). “Reflected Generalized Beta Inverse Weibull
Distribution: definition and properties”. arXiv: 1309.6108 [math.ST].
[27]. R. Subba Rao, R.R.L. Kantam, and G. Prasad, (2015). “Modified Maximum likelihood Estimation in Pareto-Rayleigh
distribution”. Golden Research Thoughts, pp.140-152.
[28]. Taras Bodnar, Stepan Mazur, and Krzysztof Podgorski, (2015). “Singular Inverse Wishart Distribution with Application to
Portfolio Theory”. Mathematical Statistics Stockholm University Research Report 8.