Common Coupled Fixed Point Theorems in Fuzzy Metric Spaces

0*, P Srikanth Rao**
* Associate Professor, Department of Mathematics, Aurora’s Technological Institute, Hyderabad, Telangana, India.
** Professor, Department of Mathematics, B. V. Raju Institute of Technology, Narsapur, Telangana, India.
Periodicity:October - December'2016
DOI : https://doi.org/10.26634/jmat.5.4.8305

Abstract

A fuzzy set of X is a function with domain X and values in [0, 1]. If A is a fuzzy set and x ? X, then the function values A(x) are called the grade of membership of x in A. A mapping F from X to F(Y) is called a fuzzy mapping if for each x ? X; F(x) is a fuzzy set on Y and F(x)(y) denotes the degree of membership of y in F(x). Let X be a metric linear space and let W(X) denote the set of all fuzzy sets on X such that each of its α-cut is a nonempty compact and convex subset (approximate quantity) of X. A fuzzy mapping F from X to W(X) is called a fuzzy contraction mapping if there exists q ? (0, 1) such that D(F(x), F(y)) ≤ qd(x, y) for each x,y ? X. In this paper, two common coupled fixed point theorems for six self maps is proved under Wcompatible conditions in fuzzy metric spaces. Coupled fixed point and coupled point of coincidence for contractive mappings in complete fuzzy metric space is also obtained. The results obtain an extension of Theorem 2.1 by K. Pandu Ranga Rao, K. Rama Koteswara Rao, and S. Sedghi, (2014) [11]. Common Coupled Fixed Point Theorems in Fuzzy Metric Spaces. Finally, an example has been given to illustrate the usability of the main result.

Keywords

Fuzzy Metric Space, Common Fixed Points, Weakly Compatible Maps, Coupled Fixed Point.

How to Cite this Article?

Singh, T.R., and Rao, P.S. (2016). Common Coupled Fixed Point Theorems in Fuzzy Metric Spaces. i-manager’s Journal on Mathematics, 5(4), 1-10. https://doi.org/10.26634/jmat.5.4.8305

References

[1]. A. George and P. Veeramani, (1994). “On some result in fuzzy metric space”. Fuzzy Sets Syst., Vol.64, pp.395-399.
[2]. B. Schweizer and A. Sklar, (1960). “Statistical metric spaces”. Pacific J. Math., Vol.10, pp.313-334.
[3]. B. Singh and M. S. Chauhan, (2000). “Common fixed points of compatible maps in fuzzy metric spaces”. Fuzzy Sets Syst., Vol.115, No.3, pp.471-475.
[4]. B. Singh and S. Jain, (2005). “Semi-compatibility and fixed point theorems in fuzzy metric space using implicit relation”. Internat. J. Math. Math. Sci., Vol.16, pp.2617-2629.
[5]. B.Singh and S. Jain, (2005). “Semi-compatibility, compatibility and fixed point theorems in fuzzy metric space”. J.Chung Cheong Math. Soc., Vol.18, No.1, pp.1-22.
[6]. C. Alaca, (2010). “Fixed point results for mappings satisfying a general contractive condition of operator type in dislocated fuzzy quasi-metric spaces”. J. Comput.Anal. Appl., Vol.12, No.1-b, pp.361-368.
[7]. C. Alaca, D. Turkoglu and C. Yildiz, (2006). “Fixed Points in Intuitionistic Fuzzy Metric Spaces”. Chaos, Solitons & Fractals, Vol.29, No.5, pp.1073-1078.
[8]. D. Turkoglu, C. Alaca, Y. J. Cho, and C. Yildiz, (2006). “Common Fixed Point Theorems in Intuitionistic Fuzzy Metric Spaces”. J. Appl. Math. Comput., Vol.22, No.1-2, pp.411-424.
[9]. D. Turkoglu, I. Altun, and B. Fisher, (2006). “Common fixed point theorems for four mappings with some weak conditions of commutativity”. Novi. Sad. J. Math., Vol.36, No.1, pp.75-86.
[10]. I. Altun and D. Turkoglu, “Fixed points of sequences of maps on fuzzy metric spaces”. Ital. J. Pure Appl.Math, Vol.24.
[11]. K. Pandu Ranga Rao, K. Rama Koteswara Rao, and S. Sedghi, (2014). “Common Coupled Fixed Point Theorems in Fuzzy Metric Spaces”. GU. J. Sci, Vol.27, No.2, pp.739-745.
[12]. J. Rodríguez López, and S. Ramaguera, (2004). “The Hausdorff fuzzy metric on compact sets”. Fuzzy Sets Sys, Vol.147.
[13]. L. A. Zadeh, (1965). “Fuzzy sets”. Inform and Control, Vol.8, pp.338-353.
[14]. M. Abbas, M. Alikhan, and S. Radenovic, (2010). “Common coupled fixed point theorems in cone metric spaces for W-compatible Mappings”. Applied Mathematics and Computation, Vol.217, No.1, pp.195-202.
[15]. M. Grabiec, (1988). “Fixed points in fuzzy metric spaces”. Fuzzy Sets Syst., Vol.27, pp.385-389.
[16]. O. Hadzic and E. Pap, (2002). “A fixed point theorem for multi valued mappings in probabilistic metric spaces and an application in fuzzy metric spaces”. Fuzzy Sets Syst., Vol.127, pp.333-344.
[17]. R. Chugh and S. Kumar, (2002). “Common fixed point theorems in fuzzy metric spaces”. Bull. Cal. Math. Soc., Vol.94, No.1.
[18]. R. Saadati, A. Razani, and H. Adibi, (2006). “A common fixed point theorem in -fuzzy metric spaces”. Chaos, Solitons and Fractals, Chaos, pp.01-023.
[19]. R. Vasuki, (1999). “Common fixed points for R-weakly commuting maps in fuzzy metric spaces”. Indian J. Pure Appl. Math., Vol.30, pp.419-423.
[20]. S. N. Mishra, S. N. Sharma, and S. L. Singh, (1994). “Common fixed points of maps in fuzzy metric spaces”. Internat. J. Math. Math. Sci., Vol.17, pp.253-258.
[21]. S. Sharma, (2002). “Common fixed point theorems in fuzzy metric spaces”. Fuzzy Sets Syst., Vol.127, pp.345-352.
[22]. Shaban Sedghi, Ishak Altun, and Nabi Shobe, (2010). “Coupled fixed point theorems for contractions in fuzzy metric spaces”. Nonlinear Analysis, Vol.72, pp.1298-1304.
[23]. T.G. Bhaskar, and V. Lakshmikantham, (2006). “Fixed point theorems in partially ordered cone metric spaces and applications, Nonlinear Analysis”. Theory, Methods and Applications, Vol.65, No.7, pp.825-832.
[24]. Xin-Qi Hu, (2011). “Common coupled fixed point theorems for contractive mappings in fuzzy metric spaces”. Fixed Point Theory and Applications, Article ID 363716, 14 pages, doi: 10.1155/2011/363716.
[25]. Y.J. Cho, (1997). “Fixed points in fuzzy metric spaces”. J. Fuzzy Math., Vol.5, pp.949-962.
[26]. Y. J. Cho, H. K. Pathak, S. M. Kang and J. S. Jung, (1998). “Common fixed points of compatible maps of type (ß ) on fuzzy metric spaces”. Fuzzy Sets Syst. Vol.93, pp.99-111.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.