References
[1]. Agrawal R, Gehrke J, Gunopulos D, and Raghavan P,
(1998). “Automatic subspace clustering of highdimensional
data for data mining applications”. In:
Proceedings of the ACM International Conference on
Management of Data (SIGMOD), pp.94-105.
[2]. Aggarwal CC, and Reddy CK, (2013). “Data
clustering: algorithms and applications”. Data Mining
Knowledge and Discovery Series 1st Eds. CRC Press.
[3]. Berkhin P, (2006). “A survey of clustering data mining
techniques”. In: Kogan J, Nicholas C, Teboulle M (eds)
Grouping Multidimensional Data, chap 2. Springer, New
York, pp.25-71.
[4]. Cheng CH, Fu AW, and Zhang Y, (1999). “Entropybased
subspace clustering for mining numerical data”. In: Proceedings of the 5th ACM International Conference
on Knowledge Discovery and Data Mining (KDD), pp. 84-
93.
[5]. Dash M, Choi K, Scheuermann P, and Liu H, (2002).
“Feature selection for clustering-a filter solution. In:
Proceedings of the 2nd IEEE International Conference on
Data Mining (ICDM), pp. 115-122.
[6]. Fromont É, Prado A, and Robardet C, (2009).
“Constraint-based subspace clustering”. In Proceedings
of the 9th SIAM International Conference on Data Mining
(SDM), pp.26-37.
[7]. Günnemann S, Müller E, Färber I, and Seidl T, (2009).
“Detection of orthogonal concepts in subspaces of high
dimensional data”. In: Proceedings of the 18th ACM Conference on Information and Knowledge
Management (CIKM), pp.1317-1326.
[8]. Houle ME, Kriegel HP, Kröger P, Schubert E, and Zimek
A, (2010). Can shared-neighbor distances defeat the
curse of dimensionality?. In: Proceedings of the 22nd
International Conference on Scientific and Statistical
Database Management (SSDBM).
[9]. Sim K, Poernomo AK, and Gopalkrishnan V, (2010).
“Mining actionable subspace clusters in sequential data”. In: Proceedings of the 10th SIAM International Conference
on Data Mining (SDM), pp.442-453.
[10]. Han J, Pei J, and Kamber M, (2011). Data Mining:
Concepts and Techniques. Elsevier.
[11]. Ji L, Tan KL, and Tung AKH, (2006). Mining frequent
closed cubes in 3D datasets. In Proceedings of the 32nd
International Conference on Very Large Databases
(VLDB), pp.811-822.
[12]. Jang W, Jang W, and Hendry M, (2007). “Cluster
analysis of massive datasets in astronomy”. Stat Comput,
Vol. 17, No. 3, pp. 253-262.
[13]. Kleinberg J, Papadimitriou C, and Raghavan P,
(1998). “A microeconomic view of data mining”. Data
Mining Knowl Discov, Vol.2, No.4, pp.311-324.
[14]. Kailing, Kailing K, Kriegel HP, Kröger P, and Wanka S,
(2003). “Ranking interesting subspaces for clustering high
dimen-sional data”. In: Proceedings of the 7th European
Conference on Principles and Practice of Knowledge
Discovery in Databases (PKDD), pp.241-252.
[15]. Kailing, Kailing K, Kröger P, and Kriegel HP, (2004).
“Density-connected subspace clustering for high
dimensional data”. In: Proceedings of the 4th SIAM
International Conference on Data Mining (SDM), pp.246-
257.
[16]. Kriegel HP, Kroger P, Renz M, and Wurst S, (2005). “A
generic framework for efficient subspace clustering of
high-dimensional data”. In fifth IEEE International
Conference on Data Mining (ICDM'05), pp.1-8.
[17]. Kriegel, Kriegel HP, Borgwardt KM, Kröger P, Pryakhin
A, Schubert M, and Zimek A, (2007). “Future trends in data
mining”. Data Mining Knowl Discov, Vol. 15, No. 1, pp. 87- 97.
[18]. K. Sim, Sim K, Gopalkrishnan V, Zimek A, and Cong
G, (2012). “A survey on enhanced subspace clustering”.
Data Min Knowl Disc, Vol.26, No.2, pp.332-397.
[19]. Lance Parsons, Parsons L, Haque E, and Liu H, (2004).
“Subspace clustering for high dimensional data: A
review”. ACM SIGKDD Explor Newsl, Vol.6, No.1, pp.90-
105.
[20]. Li T, Ma S, and Ogihara M, (2004). “Document
clustering via adaptive subspace iteration”. In:
Proceedings of the 27th Annual International ACM SIGIR
Conference on Research and Development in
Information Retrieval. ACM, USA. pp.218-225.
[21]. Liu G, Sim K, Li J, and Wong L, (2009). “Efficient
mining of distance-based subspace clusters”. Stat Anal
Data Mining, (00975-8887), Vol.2, No.5-6, pp.427-444.
[22]. Müller E, Assent I, Günnemann S, Krieger R, and Seidl
T, (2009). “Relevant subspace clustering: Mining the most
interesting non-redundant concepts in high dimensional
data”. In: Proceedings of the 9th IEEE International
Conference on Data Mining (ICDM), pp.377-386.
[23]. Müller E, Assent I, Günnemann S, and Seidl T, (2011).
“Scalable density-based subspace clustering”. In
tProceedings of the 20th ACM International Conference on
Information and Knowledge Management, pp.1077-86,
ACM.
[24]. Sim K, Li J, Gopalkrishnan V, and Liu G, (2006).
“Mining maximal quasi-bicliques to co-cluster stocks and financial ratios for value investment”. In: Proceedings of
tthe 6th IEEE International Conference on Data Mining
(ICDM), pp.1059-1063.
[25]. Sunita Jahirabadkar, and Parag Kulkarni, (2013).
“Clustering for High Dimensional Data: Density based
subspace Clustering Algorithms”. International Journal of
Computer Applications, Vol.63, No.20, pp.00975-8887.
[26]. Vidal R, Tron R, and Hartley R, (2008). “Multiframe
motion segmentation with missing data using Power
Factorization and GPCA”. Int J Comput Vis, Vol.79, No.1,
pp.85-105.
[27]. Vidal R, (2011). “Subspace Clustering”. IEEE Signal
Proc Mag, Vol.28, No.2, pp.52-68.
[28]. Wagstaff K, Cardie C, Rogers S, and Schrödl S,
(2001). “Constrained k-means clustering with background
knowl-edge”. In: Proceedings of the 18th International
Conference on Machine Learning (ICML), pp.577-584.
[29]. Zhang T, Ramakrishnan R, and Livny M, (1996).
“BIRCH: An efficient data clustering method for very large
databases”. In: Proc. of the ACM SIGMOD International
Conference on Management of Data, Vol.1, ACM Press,
USA. pp.103-114.
[30]. Zaki MJ, Peters M, Assent I, and Seidl T, (2005).
“CLICKS: An effective algorithm for mining subspace clus
ters in categorical datasets”. In: Proceedings of the 11th
ACM International Conference on Knowledge Discovery
and Data Mining (KDD), pp.736-742.