References
[1]. Jones-Gotman M, Smith ML, and Wieser HG. (1998).
“Intraarterial amobarbital procedures”. In: Engel J, Pedley
T(Ed.). Epilepsy: A Comprehensive Textbook, Vol. 2,
NewYork: Raven Press, pp. 767-75.
[2]. Jung TP, Makeig S, Humphries C, et al. (2000).
“Removing electroence phalographic artifacts by blind
source separation”. Psychophysiology, Vol. 37, No. 2, pp.
163-78.
[3]. Lagerlund TD, Sharbrough FW, and Busacker NE.
(1997). “Spatial filtering of multichannel electroencephalographic
recordings through Principal Component
Analysis by singular value decomposition”. J. Clin
Neurophysiol, Vol. 14, No. 1, pp. 73-82.
[4]. Jung TP, Humphries C, and Lee TW. (1998). “Removing
electroencephalographic artifacts comparison between
ICA and PCA”. Neural Network Signal Process, Vol. 8, pp.
63-72.
[5]. Padmaja, N., S. Varadarajan, and R. Swathi, (2011).
“Signal processing of radar echoes using wavelets and
Hilbert Huang transform”. Signal and Image Processing:
An International Journal (SIPIJ), Vol.2, No.3.
[6]. Berg P, and Scherg M. (1994). “A multiple source
approach to the correction of eye artifacts”.
Electroencephalogr Clin. Neurophysiol., Vol. 90, pp. 229-
41.
[7]. T. Zikov, S. Bibian, G. A. Dumont, and M. Huzmezan,
(2002). “A wavelet based de-noising technique for ocular
th artifact correction of the Electroencephalogram”. In 24
International Conference of the IEEE Engineering in
Medicine and Biology Society, Huston, Texas, Vol. 1, pp.
98-105.
[8]. N. E. Huang, Z. Shen, and S. R. Long, (1998). “The
empirical mode decomposition and the Hilbert spectrum
for nonlinear and nonstationary time series analysis”. In
Proc. Royal. Soc. London. A, Vol. 454, pp. 903-995.
[9]. R. Yan, and R. Gao, (2006). “Hilbert-Huang Transformbased
vibration signal analysis for machine health
monitoring”. IEEE Trans. Instrum. Meas., Vol. 55, No. 6,
pp.2320-2329.
[10]. Tian-yun Li, Yan Zhao, and Nan Li, (2005). “Empirical
Mode Decomposition-based Hilbert Transform to Power
System Transient Signal Analysis”. Automation of Electric
Power Systems, Vol. 29, No. 4, pp. 49-52.
[11]. Mao Wei, Jin Ronghong, Geng Junping, and Li
Jiaqiang, (2006). “A Time-Frequency Analysis Method for
Non-stationary Signals Based on Improved Hilbert-Huang
Transform and Its Application”. Journal of Shanghai
Jiaotong University, Vol. 40, No. 5, pp. 724-729.
[12]. Loh CH, et al. (2001). “Application of the Empirical
Mode Decomposition- Hilbert Spectrum Method to
Identify Near-fault Ground-motion Characteristics and
Structural Responses”. Bulletin of the Seismological
Society of America, No. 91, pp. 1339-1357.
[13]. A.O. Boudraa, J.C. Cexus, and Z. Saidi, (2004).
“EMD-Based signal noise reduction”. International Journal
of Signal Processing, Vol. 1, No. 1, pp. 33-37.
[14]. N. Padmaja, and E. Ramyakrishna, (2015). “HHT and DWT Based MIMO-OFDM for Various Modulation Schemes:
A Comparative Approach”. i-manager's Journal on
Wireless Communication Networks, Vol. 4, No. 2, pp. 26-
31, ISSN Print:2319-4839, ISSN Online: 2320-2351.
[15]. G Ramakrishna, and N. Padmaja, (2016).
“Estimation of Teager Energy Using EMD and HHT”. IEEE
International Conference on Applied and Theoretical
Computing and Communication Technology (ICATCCT -
2016), SJB Institute of Technology, Kengeri, Bengaluru,
India.
[16]. Pasala Gowri, P. V. Ramana, and N. Padmaja,
(2016). “Independent Component Analysis for Single
Channel Source Separation using Wavelet Packet
Decomposition”. International Journal of Scientific &
Engineering Research, Vol. 7, No. 6, pp. 1210-1221, ISSN
2229-5518.
[17]. Padmaja, N., Varadarajan, S., and Latha, G.M.
(2011). “Empirical Mode Decomposition of Atmospheric
Radar Signals”. i-manager's Journal on Electronics
Engineering, Vol. 1, No. 4, pp. 29, ISSN Print: 2229-7286
ISSN Online: 2249-0760.