References
[1]. Seema Abhijeet Kaveeshwar, and Jon Cornwall,
(2014). “The Current State of Diabetes Mellitus in India”.
Australas Med. Jr., Vol. 7, No. 1, pp. 45-48.
[2]. Kounteya Sinha, (2011). India’s Diabetes Burden to
Cross 100 Million by 2030. The Times of India.
[3]. A.D. Fleming, K.A. Goatman, and J.A. Olson, (2010).
“The role of exudates and hemorrhage detection in
automated grading of diabetic retinopathy”. British
Journal of Ophthalmology, Vol. 94, No. 6, pp. 706-711.
[4]. Hipwell J.H, Strachan F, Olson J.A, McHardy K.C,
Sharp P.F, and Forrester J.V, (2000). “Automated detection
of micro-aneurysms in digital red-free photographs: A
diabetic retinopathy screening tool”. Diabet Med, Vol. 17,
pp. 588–594.
[5]. Lee S, Lee E, Kingsley R, Wang Y, Russell D, and Klein R,
(2001). “Comparison of diagnosis of early retinal lesions of diabetic retinopathy between a computer and human experts”. Arch. Ophthalmol, Vol. 119, pp. 509–515.
[6]. Sinthanayothin C, Boyce J.F, Williamson T.H, Cook H.L,
Mensah E, and Lal S, (2002). “Automated detection of
diabetic retinopathy on digital fundus image”. Journal
Diabet Med, Vol. 19, No. 105–112.
[7]. Niemeijer M, Van Ginneken B, Staal J, Suttorp-
Schulten M.S, and Abramoff M.D, (2005). “Automatic
detection of red lesions in digital color fundus
photographs”. IEEE Trans. Med. Imag., Vol. 24, pp.
584–592.
[8]. Usher D, Dumskyj M, Himaga M, Williamson T.H,
Nussey S, and Boyce J, (2004). “Automated detection of
diabetic retinopathy in digital retinal images: A tool for
diabetic retinopathy screening”. Diabet Med, Vol. 21, pp.
84–90.
[9] Huiqi, Li., and Chutatape, O, (2003). “A model-based
approach for automated feature extraction in fundus
images”. International Conference on Computer Vision
(ICCV), pp. 394-399.
[10] Goh K.G., Hsu, W., Li Lee, Wang, H. and Adris, (2001). An Automatic Diabetic Retinal Image Screening System.
Medical DM&KD, Krzysztof, J.C., Editor. Physica-Verlag:
Heidelberg, Germany, pp. 181-210.
[11]. Ege, B.M., Hejlese, O.K., Larsen, O.V., Moller, K.,
Jennings, B., Kerr, D., and Cavan, D.A., (2000).
“Screening for diabeticretinopathy using computer
based image analysis and statistical classification”.
Comput. Meth. Programs Biomed., Vol. 62, pp. 165-175.
[12]. B. Kande, S.S. Tirumala, and P.V. Subbaiah, (2010).
“Automatic detection of micro-aneur ysms and
haemorrhages in digital fundus images”. Journal of
Digital Imaging, pp. 430-437.
[13]. B.Kande, S.S. Tirumala, P.V. Subbaiah, and M.R.
Tagore, (2009). “Detection of red lesions in digital fundus
images”. In Proc. ISBI, pp. 558-561.
[14]. STARE: Structured Analysis of the Retina. [Online],
Available: http://www.ces.c1emson.edu-ahoover/STARE
[15]. DIARETDB1: Diabetic Retinopathy Database and
Evlauation Protocol. Retrieved from http://www2.it\ut
.fi/projectlimageret/
[16]. L. Tang, M. Niemeijer and M. Abramoff, (2013).
“Splat feature classification: Detection of the presence of large retinal heamorrhages”. Proc. IEEE 8th Int. Symp.
Biomed. Imaging (ISBI), pp. 681-684.
[17]. MESSIDOR: Methods to Evaluate Segmentation and
Indexing Techniques in the Field of Retinal
Ophthalmology. Techno-vision Project. Retrieved from
http:// www. messidor.crihan.fr/
[18]. Bob Zang, Xiangqian Wu, Jane You, Qin Li, and
FakhriKarray, (2010). “Detection of micro-aneurysms
using Multi-scale correlation co-efficient”. Elsevier,
Pattern Recognition, pp. 2237-2248.
[19]. ROC (Retinopathy Online Challenge). Retrieved from http://roc.healthcare.uiowa.edu
[20]. Akara Sopharak, Mathew N. Dailey, Bunyarit
Uyyanonvara, Sarah Barman, Tom Williamson, and Yin
Aye Moe, (2011). “Machine Learning approach to
automatic Exudates detection in retinal images from
diabetic patients”. Journal of Modern Optics, Vol. 57, No.
2, pp. 124-135.
[21]. C.I. Sanchez, R. Hornero, M.I. Lopez, and J. Poza,
(2004). “Retinal Image Analysis to Detect and Quantify Lesions Associated with Diabetic Retinopathy”. Proc. 26th
IEEE Annual International Conference on Engineering in
Medicine and Biology Society (EMBC), Vol. 3, pp.
1624–1627.
[22]. Sabibullah M, (2012). “Prognostic Neural Network
model for diabetic risks prediction”. Proc. of IEEE
International Conference on Emerging Trends in
Science, Engineering and Technology, pp. 392-395.
[23]. Sabibullah M, Shanmugasundaram V, and Raja
Priya K, (2013). “Diabetes Patient's Risk through Soft
Computing Model”. International Journal of Emerging
Trends & Tech. in Comp. Sci. (IJETTS), Vol. 2, No. 6, pp. 61-
65.
[24]. Sabibullah M, and Kashmir Raja S.V, (2010).
“Prediction of stoke risk through stacked topology of ANN
model”. International Journal of Advanced Research in
Computer Science, Vol. 1, No. 4, pp. 170-177.
[25]. Sabibullah M, and Kashmir Raja S.V, (2010). “Stroke
risk prediction through Non-linear Support Vector
Classification Models”. International Journal of Advanced
research in Computer Science, Vol. 1, No. 3, pp. 47-53.
[26]. Sabibullah M, and Kashmir Raja S.V, (2009). “A study
on cerebrovascular disease risk factor prediction through
fuzzy inference system”. International Journal of System
Simulation, Vol. No. 1, pp. 15-23.