References
[1]. Dwivedi, R., (1995). “Development of Advanced
Reinforced Aluminum Brake Rotors”. SAE Technical Paper
Series 950264, USA, pp. 8-11.
[2]. Nakanishi, H., Kakihara, K., Nakayama, A., and
Murayama, T., (2002). “Development of Aluminum Metal
Matrix Composites (Al-MMC) Brake Rotor and Pad”. JSAE
Review, pp. 23, 365-370.
[3]. Nataraj, N., Vijayarangan, S., and Rajendran, I.,
(2006). “Wear Behavior of A356/25SiCp Aluminium Matrix Composites Sliding Automobile Friction Material”. Wear,
Vol. 261, pp. 812-822.
[4]. Zhang, S., and Wang, F., (2007). “Comparison of
Friction and Wear Performance of Brake Material Dry Sliding
against Two Aluminum Matrix Composites Reinforced with
Different SiC Particles”. Journal of Materials Processing
Technology, Vol. 182, pp. 122-127.
[5]. Mosleh, M., Balu, P.J., and Dumitrescu, D., (2004). “Characteristics and Morphology of Wear Particles from
Laboratory Testing of Disk Brake Materials”. Wear, Vol. 256,
pp. 1128-1134.
[6]. Yang, Z., Han, J., Cui, S., Kang S.B., and Lee, J. M.,
(2006). “Solidification Simulation of a SiCp /Al Disk Brake Casting”. Journal of Ceramic Processing Research, Vol. 7,
No. 4, pp. 363-366.
[7]. Ding, Z. L., Fan, Y.C., Qi, H.B., Ren, D.L.,. Guo J.B., and
Jiang, Z. Q., (2000). “Study on the SiC /Al- Alloy Composite p
Automotive Brake Rotors”. Acta Metallurgica Sinica, Vol. 13
No. 4, pp. 974-980.
[8]. Michael K., Aghajanian, et al., (1995). “High
Reinforcement Content Metal Matrix Composites for
Automotive Applications”. SAE Technical Paper Series,
950263, pp. 152-158.
[9]. Boz, M., and Kurt, A., (2007). “The Effect of Al O on the 2 3
Friction Performance of Automotive Brake Friction
Materials”. Tribology International, Vol. 40, pp. 1161-1169.
[10]. Triches Jr, M., Gerges, S. N. Y., and Jordan, R. J.,
(2004). “Reduction of Squeal Noise from Disc Brake Systems
using Constrained Layer Damping”. Journal of the Braz.
Soc. of Mech. Sci. & Eng., Vol. 26, pp. 340-348.
[11]. Uyyuru, R. K., Surappa, M. K., and Brusethaug, S.,
(2006). “Effect of Reinforcement Volume Fraction and Size
Distribution on the Tribological Behavior of Alcomposite/
brake tribo-couple”. Wear, Vol. 260, pp. 1248-1255.
[12]. Peter, J, Balu., and Harry, M., (2003). “Characteristics
of Wear Particles Produced during Friction Tests of
Conventional and Unconventional Disc Brake Materials”.
Wear, Vol. 255, pp. 1261-1269.
[13]. Jang, H., Ko K., Kim, S. J., Basch, R. H., and Fash J.W.,
(2004). “The Effect of Metal Fibers on the Friction
Performance of Automotive Brake Friction Materials”. Wear,
Vol. 256, pp. 406-414.
[14]. Uyyurua, R. K., and Surappa, M. K., (2007).
“Tribological Behaviour of Al-Si-SiCp Composites/Automobile Brake Pad System Under Dry Sliding
Conditions”. Tribology International Journal, Vol. 40, pp.
365-373.
[15]. Filip, P., Weiss, Z., and Rafaja, D., (2002). “On Friction
Layer Formation in Polymer Matrix Composites Materials for
Brake Applications”. Wear, Vol. 252, pp. 189-198.
[16]. Yamabe, J., Takagi, M., Matsui, T., Kimura, T., and
Sasaki, M., (2002). “Development of Disc Brake Rotor for
Trucks with High Thermal Fatigue Strength”. JSAE Review, Vol.
23, pp. 105-112.
[17]. Hoyer, L. G., Bach, A., Nielsen, G.T., and Morgen, P.,
(1999). “Tribological Properties of Automotive Disk Brakes
with Solid Lubricants”. Wear, Vol. 232, pp. 168-175.
[18]. Kermc, M., Kalin, M., and Zintin., (2005).
“Development and use of an Apparatus for Tribological
Evaluation of Ceramic-based Brake Materials”. Wear, Vol.
259, pp. 1079-1087.
[19]. Yoshio Jimbo, Takahiro Mibe et al., (1990).
“Development of High Thermal Conductivity Cast Iron for
Brake Disk Rotors”. SAE Technical Paper Series International
Congress and Exposition, Detroit, MI. pp. 1-7.
[20]. Liu, T., and Rhee, S. K, (1978). “High Temperatures
Wear of Semimetallic Disc Brake Pads”. Wear, Vol. 46, pp.
213-218.
[21]. Cho, M.H., Kim, S. J., Basch, R. H., Fash, J. W., and
Jang, H., (2003). “Tribological Study of Gray Cast Iron with
Automotive Brake Linings: The Effect of Rotor
Microstructure”. Tribology International, Vol. 36, pp. 537-545.
[22]. Wycliffe, P., (1993). “Friction and Wear of Duralcan
Reinforced Aluminium Composites in Automotive Braking
Systems”. SAE Technical Paper-Series, 930187, pp. 300-
311.
[23]. Howell, G. J., and Ball, A., (1995). “Dry Sliding Wear of
Particulate-Reinforced Aluminium Alloys Against
Automobile Friction Materials”. Wear, Vol. 181-183, Part 1,
pp. 379-390.