Common fixed points in intuitionistic fuzzy metric space

0*, Shailesh Dhar Diwan**
* Senior Assistant Professor, Department of Applied Mathematics, SSIPMT, Raipur, India.
** Associate Professor, Department of Mathematics, Government Engineering College, Raipur, India.
Periodicity:July - September'2016
DOI : https://doi.org/10.26634/jmat.5.3.8226

Abstract

In this paper, the authors have established some common fixed point theorems for Occasionally Weakly Compatible (OWC) mappings in intuitionistic fuzzy metric spaces. In this paper, using Occasionally Weakly Compatible (OWC) mappings, some common fixed point theorems for four mappings have been proved, that extend the scope of the study of common fixed point theorems from the class of weakly compatible mappings to a wider class of occasionally weakly compatible mappings. The obtained results significantly generalize and improve results of common fixed point theorems in intuitionistic fuzzy metric space. The obtained results generalize and improve several results of metric spaces and fuzzy metric spaces to intuitionistic fuzzy metric spaces using more general condition of OWC mappings. As an application to main results, they have presented some fixed point theorems for self mappings in fuzzy metric space by using an implicit relation. The paper has scope to extend the results for modified intuitionistic fuzzy metric spaces and intuitionistic m-fuzzy metric spaces.

Keywords

Intuitionistic Fuzzy Metric Space, T-Norm, T-Conorm, Compatible Mappings, Weakly Commuting Mappings, Occasionally Weakly Compatible (OWC) Mappings, Implicit Relation.

How to Cite this Article?

Sharma,P., and Diwan,S.D. (2016). Common fixed points in intuitionistic fuzzy metric space. i-manager’s Journal on Mathematics, 5(3), 32-40. https://doi.org/10.26634/jmat.5.3.8226

References

[1]. Atanassov K., (1986). “Intuitionistic Fuzzy sets”. Fuzzy Sets and System, Vol.20, pp.87-96.
[2]. Al-Thagafi M. A. and Shahzad N., (2008). “Generalized I-nonexpansive selfmaps and invariant approximations”. Acta Math. Sinica, Vol.24, No.5, pp.867-876.
[3]. George A. and Veeramani P., (1994). “On some results in fuzzy metric spaces”. Fuzzy Sets and Systems, Vol.64, pp.395- 399.
[4]. Jain M., Kumar S. and Kumar S., (2011). “Fixed Point Theorems for Occasionally Weakly Compatible Maps in Fuzzy Metric Spaces”. International Journal of Computer Applications, Vol.19, No.9, pp.975-987.
[5]. Jungck, G., (1976). “Commuting mappings and fixed points”. Amer. Math. Monthly, Vol.83, pp.261-263.
[6]. Jungck, G., (1986). “Compatible mappings and common fixed points”. Internat. J. Math. Sci. Vol.9, pp.771-779.
[7]. Jungck G. and Rhoades B.E., (1998). “Fixed Point for set valued Functions without continuity”. Indian J. Pure Appl. Math, Vol.29, No.3, pp.227-238.
[8]. Jungck G. and Rhoades B.E., (2006). “Fixed point theorems for Occasionally Weakly Compatible mappings”. Fixed Point Theory, Vol.7, No.2, pp.287-296.
[9]. Jungck G. and Rhoades B.E., (2008). “Fixed Point theorems for Occasionally Weakly Compatible Mappings”. Fixed Point Theory, Vol.9, No.1, Erratum, pp.383-384.
[10]. M.A. Khan and Sumitra, (2010). “Common fixed point theorems for occasionally weakly compatible maps in fuzzy metric spaces”. Far East J. Math. Sci., Vol.41, No.2, pp.285-293.
[11]. Kramosil O. and Michalek J., (1975). “Fuzzy Metric and statistical metric spaces”. Kybernetika, Vol.11, pp.326-334.
[12]. Manro S., Kumar S. and Bhatia S.S., (2012). “Common fixed point theorems in Intuitionistic fuzzy metric spaces using Occasionally Weakly Compatible maps”. J. Math. Comput. Sci. Vol.2, No.2, pp.73-81.
[13]. Manro S., (2013). “A common fixed point theorem in intuitionistic fuzzy metric space using occasionally converse commuting maps and implicit relation”. Advances in Fixed Point Theory, Vol.3, No.1, pp.1-8.
[14]. Menger K., (1942). “Statistical metrics”. Proc. Nat. Acad. Sci. (USA), Vol.28, pp.535- 537.
[15]. Pant B. D. and Chauhan S., (2011). “Common fixed point theorem for Occasionally Weakly Compatible mappings in Menger space”. Surv. Math. Appl., Vol.6, pp.1-7.
[16]. Park J. H., (2004). “Intuitionistic fuzzy metric spaces”. Chaos, Solitons & Fractals, Vol.22, pp.1039-1046.
[17]. Samet B., Sihag V., Ramesh K., Vats and Vetro C., (2013). “Some Common Fixed Point Theorems for OWC Mappings with Applications”. Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis, Vol.20, pp.285-299.
[18]. Schweizer B. and Sklar A., (1960). “Statistical metric spaces”. Pacific J. Math. Vol.10, pp.313-334.
[19]. Schweizer B. and Sklar A., (1983). Probabilistic Metric Spaces. Elsevier, North Holland, New York.
[20]. Turkoglu D., Alaca C. and Yildiz C., (2006). “Compatible maps and Compatible maps of type and in intuitionistic fuzzy metric spaces”. Demonstratio Math. Vol.39, No.3, pp.671-684.
[21]. Zadeh L. A. (1965). “Fuzzy sets”. Inform and Control, Vol.8, pp.338-353.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Online 15 15

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.