References
[1]. Bala Krishna N, (1990). “Applied maximum likelihood estimation for a generalized logistic distribution”. Journal of Statistic.
Planning & Inf., Vol.26, pp.221-236.
[2]. D. Kundu, Rameshwar D. Gupta, and Anubhav Manglick, (2003). “Discriminating between the log-normal and
generlaised exponential distributions”. Journal of Statistical Planning and Inference, Vol.3, No.3.
[3]. Rameshwar D. Gupta and Debasis Kundu, (2003). “Discriminating between Weibull and Generalized Exponential
Distributions”. Computational Statistics & Data Analysis, Vol.43, pp.179-196.
[4]. Rameshwar D. Gupta and Debasis Kundu, (2004). “Discriminating between Gamma and generalized Exponential
distributions”. Journal of Statistical Computation & Simulation, Vol.74, No.2, pp.107-121.
[5]. Arabin Kumar Dey, and Debasis Kundu, (2009). “Discriminating between the Bivariate Generalized Exponential and
Bivariate Weibull Distributions”. pp.1-28.
[6]. A. Sliman, Essam A.Amin and Alaa A. Abd-El Aziz, (2010). “Estimation and prediction from Inverse Rayleigh distribution
based on lower record values”. Applied Mathematical Sceinces, Vol.4, No.62, pp.3057-3066.
[7]. H. Torabi, and F.L. Bagheri, (2010). “Estimation of Parameters for an extended Generlised Half Logistic Distirbution based
on complete and censored data”. JIRSS, Vol.9, No.2, pp.171-195.
[8]. R. Satya Prasad, K. Ramchand H Rao, and R.R.L. Kantam, (2011). “Software reliability measuring using modified
maximum likelihood estimation and SPC”. International Journal of Computer Applications, Vol.21, No.7.
[9]. A.R. Sudamani Ramaswamy, and Priyah Anuburajan, (2012). “Group Acceptance Sampling plans using weighted
Binomial on Truncated Life Tests for Inverse Rayleigh and Log-Logistic Distributions”. IOSR Journal of Mathematics, Vol.12,
No.3, pp.33-38.
[10]. B. Srinivasa Rao and R.R.L. Kantam, (2012). “Mean and Range Charts for skewed distributions- A comparison based on
Half Logistic Distribution”. Pakistan Journal of Statistics, Vol.8, No.4, pp.437-444.
11]. Sanku Dey, (2012). “Bayesian Estimation of the parameter and Reliability function of an Inverse Rayleigh Distribution”.
Malaysian Journal of Mathematical Sciences, Vol.6, No.1, pp.113-124.
[12]. R.R.L. Kantam, V. Rama Krishna, and M.S. Ravi Kumar, (2013a). “Estimation and Testing in Type I Generalized Half
Logistic Distribution”. Journal of Modern Applied Statistical Methods, Vol.12, No.1, pp.198-206.
[13]. R.R.L. Kantam, V. Rama Krishna, and M.S. Ravi Kumar, (2013b). “Estimation and Testing in Type-II Generalized Half
Logistic Distribution”. Journal of Modern Applied Statistical Methods, Vol.13, No.1, pp.267-276.
[14]. Tabassum Naz Sindhu, Muhammad Aslam, and Navid Feroze, (2013). “Bayes estimation of the parameters of the
inverse Rayleigh distribution for left censored data”. Prob Stat Forum, Vol.6, pp.42-59.
[15]. Jeremias Leao, Helton Saulo, and Marcelo Bourguignon, (2013). “On some properties of the beta Inverse Rayleigh
Distribution”. Chilean Journal of Statistics, Vol.4, No.2, pp.111-131.
[16]. B. Srinivasa Rao, and R.R.L. Kantam, (2014). “Discrimination Between Log-Logistic and Rayleigh Distributions”. Pak. J.
Stat. Oper. Res., Vol.10, No.1, pp.1-7.
[17]. K. Rosaiah, K. Maruthi Nagarjuna, D.C.U. Siva Kumar, and B. Srinivasa Rao, (2014). “Exponential- Log Logistic Additive
Failure Rate Model”. International Journal of Scientific and Research Publications, Vol.4, No.3.
[18]. A.R. Sudamani Ramaswamy, and S. Jayasri, (2014). “Time Truncated Chain Sampling Plans for Inverse Rayleigh
Distribution”. International Journal of Engineering Inventions, Vol.3, No.6, pp.41-45.
[19]. Reza Azimi and Faramarz Azimi Sarikhanbaglu, (2014). “Bayesian estimation for the Kumaraswamy-Inverse Rayleigh
Distribution based on progressive first failure censored samples”. International Journal of Scientific world, Vol.2, No.2, pp.45-
47.
[20]. S. Kalaiselvi A. Loganathan and R. Vijayaraghavan, (2014). “Bayesian Reliability Sampling plans under the conditions
of Rayleigh-Inverse-Rayleigh Distribution”. Economic Quality Control, Vol.29, No.1, pp.29-38.
[21]. Muhammad Shuaib Khan, (2014). “Modified Inverse Rayleigh Distribution”. International Journal of Computer
Application, Vol.87, No.13.
[22]. R.R.L. Kantam, B. Sri Ram and A. Suhasini, (2015). “Significance Test Based on Log-Logistic Distribution”. International
Journal of Computational and Theoretical Statistics, No.2, pp.99-105.
[23]. Maroof A. Khan and H,.M. Islam, (2015). “On Inferences in Acceptance Sampling for Inverse Rayleigh Distributed Life
Time”. Journal of Statistics Applications & Probability, No.2, pp.285-288.