References
[1]. Kaur, Rupinder, et al., (2014). “A Novel Image
Restoration Algorithm For Digitized Degraded Historical
Documents”. International Journal of Science,
Engineering and Technology Research, Vol. 3, No 9.
[2]. Kanungo, T. (1996). “Document degradation models and a methodology for degradation model validation”.
(Doctoral Dissertation, University of Washington).
[3]. Su, Bolaun, et al., (2012). “A Robust Document Image
Binarization Technique for Degraded Document Images”.
IEEE Transaction on Image Processing, Vol. 22, pp. 1408-
1417.
[4]. Kaur, Jagroop, et al., (2014). “Improved Degraded
Document Image Binarization Using Guided Image
Filter”. IJARCSSE, Vol. 4, No. 9.
[5]. Arney, J.S, et al., (1979). “Accelerated Aging of Paper:
The Relative Importance of Atmospheric Oxidation”.
Tappi, Vol. 62, No. 7, pp. 89-91.
[6]. Banik, G., Sobotka, W.K., Vendl, A., and Norzsicska, S.
(1993). “Effects of Atmospheric Pollutants on Deacidified
Modern Papers”. In (Bridgland, J., Ed.) 10th Triennial
Meeting, Washington DC, USA, pp. 435-441.
[7]. Kefali, Abderrahane, et al., (2014). “Foreground
Background separation by Feed forward neural network in
old Manuscripts”. Informatica, Vol. 38, pp 329-338.
[8]. R. C. Gonzalez and R. E. Woods, (2007). Digital Image
Processing. Prentice Hall.
[9]. N. Otsu. (1979). “A Threshold Selection Method from
Gray-Level Histogram”. IEEE Trans. Systems, Man, and
Cybernetics, Vol. 9, pp. 62-66.
[10]. Kapur, J.N., Sahoo, P.K., and Wong, A.K.C. (1985). “A
New Method for Gray-Level Picture Thresholding Using the
Entropy of the Histogram”. Computer Vision, Graphics,
and Image Processing, Vol. 29, pp.273-285.
[11]. Solihin, Yan., and Leedham, C.G. (1999). “Integral
Ratio: A New Class of Global Thresholding Techniques for
Handwriting Images”. IEEE Trans on Pattern Analysis and
Machine Intelligence, Vol. 21, pp. 761-768.
[12]. Graham Leedham, et al., (2002). “Separating Text
and Background in Degraded Document Images- A
Comparison of Global Thresholding Techniques for Multi-
Stage Thresholding”. Proceedings of the Eighth
International Workshop on Frontiers in Handwriting
Recognition IEEE, pp. 244-249.
[13]. Vala, Hetal J., and Baxi, Astha, (2013). “A review on
Otsu image segmentation algorithm”. IJARCET, Vol. 2, No. 2.
[14]. Kumar, C Arun, et al., (2014). “Content Restoration of
termite bitten degraded documents”. International
Journal of Engineering and Research Applications, Vol. 4,
No. 5, pp. 151-155.
[15]. Sauvola, J., Seppanen, T., Haapakoski, and S.,
Pietikainen, M. (1997). “Adaptive Document Binarization”.
4th Int. Conf. on Document Analysis and Recognition, Ulm,
Germany, pp.147-152.
[16]. Ramirej-Ortegon, M A, et al., (2010). “Transition pixel:
A concept for Binarization based on Edge detection and
Gray Intensity histograms”. Pattern Recognition, Vol. 43,
No. 4, pp. 1233-1243.
[17]. Meng-Ling Feng and Yap-Peng Tan, (2004).
“Contrast adaptive binarization of low quality document
images”. IEICE Electron. Express, Vol. 1, No. 16, pp. 501-
506.
[18]. Ergina Kavallieratou and Stamatatos Stathis, (2006).
“Adaptive Binarization of Historical Document Images”.
th The 18 International Conference on Pattern Recognition IEEE, Vol. 3, pp. 742-745.
[19]. Yuasa, Kenichieo, et al., (1996). “Restoration of
Degraded Character Dot Image Using Discrete Hopfield
Neural Network”. Digital Signal Processing Workshop, IEEE.
pp. 287-290.
[20]. Yu Qiao, et al., (2006). “A framework toward
Restoration of writing order from single–stroked
Handwriting image”. IEEE Transactions on Pattern Analysis
and Machine Intelligence, Vol. 28, No. 11, pp. 1724-1737.
[21]. Zhenwen Dai and Jorg Lucke, (2014). “Autonomous
Document cleaning- A generative approach to
reconstruct strongly corrupted scanned texts”. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, Vol. 36, No. 10, pp 1950-1962.
[22]. Quraishi, M.I., et al., (2013). “A novel hybrid
approach to restore historical degraded documents”.
International Conference on Intelligent Systems and
Signal Processing (ISSP), IEEE, pp. 185-189.