This paper presents an intelligent approach to the improvement and optimization of control performance of a photovoltaic system with multi-stacked voltage equalizer based on fuzzy logic controller. A single-switch voltage equalizer using multistacked SEPIC is proposed to settle the partial shading issues to extract maximum energy from the Photovoltaic (PV) Systems. The single-switch topology can considerably simplicity of the circuitry compared with conventional equalizers, requiring multiple switches in proportion to a number of PV module/substring. The proposed voltage equalizer can be derived by stacking capacitor-inductor-diode (CLD) filter on SEPIC converter. Local MPPs were eliminated and extractable maximum power was increased by the equalizer. Fuzzy logic algorithms are simulated using a MATLAB fuzzy logic toolbox. An Adaptive Fuzzy Logic Control (AFLC) algorithm is employed to online regulate the equalization period, according to the voltage difference between panel voltage, not only greatly abbreviating the balancing time, but also effectively preventing over-equalization. A prototype with three PV panels is implemented to this paper. The equalization efficiency is higher than 98% equalization compared with the traditional analog control algorithm. This paper explains the basic results of fuzzy logic algorithms and provides the better algorithm for maximum output voltage.