References
[1]. K. Palem and A. Lingamaneni, (2013). “Ten years of
building broken chips: The physics and engineering of
inexact computing”. ACM Trans. Embedded Comput.
Syst., Vol.12, No.2.
[2]. A. Lingamaneni, K. Muntimadugu, C. Enz, R. Karp, K.
Pa l e m , a n d C . P i g u e t , ( 2 0 1 2 ) . “A l g o r i t hmi c
methodologies for ultra-efficient inexact architectures for
sustaining technology scaling”. In Proc. ACM Int. Conf.
Comput. Frontiers, pp.3-12.
[3]. H. Mahdaini, A. Ahmadi, S. Fakhraie, and C. Lucas,
(2010). “Bio- inspired imprecise computational blocks for
efficient VLSI implementation of soft-computing
applications”. IEEE Trans. Circuits Syst. I, Reg. Papers,
Vol.57, No.4, pp.850-862.
[4]. V. Gupta, D. Mohapatra, S. Park, A. Raghunathan,
and K. Roy, (2011). “IMPACT: IMPrecise adders for low
power approximate computing”. In Proc. Int. Symp. Low
Power Electron. Des., pp.1-3.
[5]. Z. Yang, A. Jain, J. Liang, J. Han and F. Lombardi,
(2013). “Approximate XOR XNOR-based adders for
rd inexact computing”. In Proc. 13 IEEE Conf. Nanotechnol.,
pp.690-693.
[6]. D. Mohapatra, V. Chippa, A. Raghunathan, and K.
Roy, (2011). “Design of voltage -scalable meta-functions
for approximate computing”. In Proc. Des., Autom. Test.
Eur. Conf. Exhib., pp.1-3.
[7]. C. Liu, J. Han, and F. Lombardi, (2015). “An analytical
framework for evaluating the error characteristics of
approximate adders”. IEEE. Tranc. Comput., Vol.64, No.5,
pp.1268-1281.
[8]. C. Liu, J. Han, and F. Lombardi, (2014). “A low-power,
high per formance approximate multiplier with
configurable partial error recovery”. In Proc. Design,
Autom. Test Eur. Conf. Exhib., pp.1-4.
[9]. J. Y. Tong, D. Nagle, and R. Rutenbar, (2000).
“Reducing power by optimizing the necessar y
precision/range of floating-point arithmetic”. IEEE Trans.
Very Large Scale Integr. Syst., Vol.8, No.3, pp.273-286.
[10]. A. Gupta, S. Mandavalli, V. Mooney, K. Ling, A. Basu,
H. Johan, and B. Tandianus, (2011). “Low power
probabilistic floating-point multiplier design”. In Proc. IEEE
Comput. Soc. Annu. Symp. VLSI, pp.182-187.
[11]. F. Fang, T. Chen, and R. Rutenbar, (2002). “Floatingpoint
bit-width optimization for low-power signal
processing applications”. In Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Process., Vol.3, pp.3208-3211.
[12]. J. Eilert, A. Ehliar, and D. Liu, (2004). “Using low
precision floating point numbers to reduce memory cost
th for MP3 decoding”. In Proc. 6 IEEE Workshop Multimedia
Signal Process., pp.119-122.
[13]. IEEE Standard, (2008). Floating-Point Arithmetic,
(754-2008). Aug. 29, 2008.
[14]. B. Parhami, (2009). Computer Arithmetic:
Algorithms and Hardware Designs. London, U.K.: Oxford
Univ. Press.
[15]. W. Liu, L, Chen, C. Wang, M. O'Neill, and F. Lombardi,
(2014). “Inexact floating-point adders for dynamic image
th processing”. In Proc.14 IEEE Conf. Nano-technol.,
pp.239-243.
[16]. W. Liu, L. Chen, C. Wang, M. O'Neill, and F. Lombardi,
(2016). “Design and Analysis of Inexact floating-point
adders”. IEEE Trans. Comput., Vol.65, No.1.