References
[1]. ChuanZhou, (2015). “E-Tree: An Efficient Indexing
Structure for Ensemble Models on Data streams”. IEEE
Transactions on Knowledge and Data Engineering,
Vol.27, No.2.
[2]. J. Gao, R. Sebastiao, and P. Rodrigues, (2009). “Issues
in Evaluation of Stream Learning Algorithms”. In KDD 2009.
pp.329-338.
[3]. H. Yu, L. Ko, K. Y, S. Hwang, and W. Han, (2011). “Exact
Indexing for Support Vector Machines”. In SIGMOD 2011.
pp. 709-720.
[4]. Z. Lu, X. Wu, X. Zhu, and J. Bongard, (2010).
“Ensemble Pruning Via Individual Contribution Ordering”.
In KDD 2010. pp. 871-880.
[5]. A. Machanavajjhala, E. Vee, M. Garofalakis, and J.
Shanmugasundaram, (2008). “Scalable Ranked Publish Subscribe”. In VLDB 2008. Vol. 1, No. 1, pp. 451-462.
[6]. Y. Zhang, S. Burer, and W. Street, (2007). “Ensemble
Pruning Via Semi Definite Programming”. Journal of
Machine Learning Research, Vol. 7, pp. 1315-1338.
[7]. C. Domeniconi and D. Gunopulos, (2011).
“Incremental Support Vector Machine Construction”. In
ICDM 2011, pp. 589-592.
[8]. Y. Tao and D. Papadias, (2014). “Performance Analysis
of R*-trees with Arbitrary Node Extents”. IEEE Transactions
on Knowledge and Data Engineering, Vol. 16, No. 6, pp.
653-668.
[9]. A. Guttman, (1984). “R-Trees: A Dynamic Index
Structure for Spatial Searching”. Proc. ACM SIGMOD, pp.
47-57.
[10]. P. Domingos and G. Hulten, (2000). “Mining High-
Speed Data Streams”. Proc. Sixth ACM SIGKDD Int'l Conf.
Knowledge Discovery and DataMining (KDD), pp. 71-80.
[11]. C. Domeniconi and D. Gunopulos, (2001).
“Incremental Support Vector Machine Construction”,
Proc. IEEE Int'l Conf. Data Mining (ICDM).