References
[I ]. L.-X.Wong et J. M. Mendel, Generating fuzzy ru\es by
learning from exampies, IEEE Trons. Syst., Mon, Cybern,,
voL 22, pp. 14141427, Nov,/Dec. 1992.
[2]. Robert 8obusko, Construction of Fuzzy Systems,
lnterplOy between Precision ond Tronsporency Control
Lob, Foc. ITS, Delft Univ. of Technology
[3]. Serge Guilloume, Design\ng Fuzzy \nference Systems
from Data: An \nterpretabillfy-Or\ented Revlew, IEEE
Trons. Fuzzy Syst., Vol, . 9, NO. 3, JUNE 2001
[4]. Sontiogo Ajo-Fernandez ond Corlos Alberolo-L6pez,
Fast Inference in SAM Fuzzy Systems Using Transition
Matrices, IEEE Trons. Fuzzy Syst., VoI., VOL. 12, NO, 2, APRIL
2004
[5]. R. Alcol6, J. Cosillos, O. Cord6n, F. Herrero, ond S.
Zwir, Know\edge engineering Systems techniques and
applications, in Techniques for Looming ond Tuning Fuzzy
Rule-Hosed Systems for Linguistic Modeling ond Their
Applicotion. NewYork: Acodemic, I 999 .
[6]. E. Momdoni, App/ication of fuzzy algorithms for
control of slmp\e dynamic plant, Proc. Inst. Elect. Eng,:
Control Science, vol. I 21, pp. 15851588, Dec. 1974.
[7]. 8. Kosko, Fuzzy Engineering. Upper Soddle River, NJ:
Prentice-HoIL 1997.
[8]. M~ 8oczynski, On a class of distrlbuHve implications,
Inf, J. Uncertointy Knowledge-Bosed Syst. , voL 9, no. 2, pp,
229238, 2001 IEEE Trons. Fuzzy Syst., VoI. I 2, NO. 2, APRIL
2004
[9]. T. Tokogi ond M. Sugeno, Fuzzy \dent/flcation of
systems and its applications to modeling and control,
IEEE Trons. Syst~, Mon, Cybern., voL SMC- I 5, pp. I I 6 I 32,
JOn. 1985.
[10]. O. Cordon, F. Herrero, I. Zwir, A hierarchical
know\edge-based environment for linguistic mode\Ing:
modeis and iteratlve methodology, Fuzzy Sets ond
Systems (2003) 307341
[ I I ]. J. Espinoso ond J. VOndewOllfe, Constructing Fuzzy
Models with Linguistic \ntegrity from Numerlcal Data-
AFRELI Algorithm, IEEE Trons, Fuzzy Syst,, VoI, 8, No, 5, pp,
59 I -600, 2000.
[ I 2]. C.-C. Wong ond C.-C. Chen, A Hybrid Clustering
and Gradient Descent Approach for Fuzzy Mode\Ing,
IEEE Trons. Syst., Mon, ond Cybern. B, VoI. 29, No. 6, pp.
686-693, 1999.
[ I 3]. J. Espinoso ond J. VOndewOllfe, Constructing Fuzzy
Models with Linguistic \ntegrity from Numerical Data-
AFRELI Algorithm, IEEE Trons. Fuzzy Syst., Vol. 8, No, 5, pp,
59 I -600, 2000.
[ I 4]. O.Cordon, F.Herrero ond oil. Genetic fuzzy systems.'
evolutionary tuning and \earnlng of fuzzy know\edge
bases, World Scientific, Singopore, New Jersey, London,
Hong Kong, 200 I , 462 pp~
[ I 5]. A.E. G owedo, ond J.M. Zurodo, Doto-Driven
linguistic Modeling Using Relotionol Fuzzy Rules IEEE Trons.
Fuzzy Syst., VoI. . 11, NO. I , FEBRUARY 2003 I 21
[ I 6]. J.-S. R. Jong, C..-T. Sun, ond E. Mizutoni, Neuro-Fuzzy
and Soft-Computing. Upper Soddle River, NJ: Prentice-
HolL I 997~
[ I 7]. Y.Tong, W.J.Wong, ond Y.A.Liou. GA-Hosed Fuzzy
Modeling with on Exponentiol-Portitioned Structure \nternationa\ Journal of Fuzzy Systems, Vo\, 4, No, 4,
December2OO2
.
[18]. R J. Bentley. Evolving Fuzzy Detectives: An
Investlgotion into the Evolution of Fuzzy Rules Deportment
of Computer Science, University College London, Gower
Street, London WCIE 68T, UK
[ I 9]. D. E. Gustofson ond W C. Kessei, Fuzzy c\ustering
with a fuzzy covar\ance matrix In Proc~ IEEE Cont,
Decision Control, Son Diego, CA, 1979, pp. 761 766 .
[20]. J. Fon ondW. Xie, Distance measure and \nduced
fuzzy entropy, Fuzzy Sets Syst., vol. 104, pp. 305314, 1999.
[2 I ]. 8. 8. Choudhuri ond A. Rosenfeld, On a metr\c
d\stance between fuzzy sets, Pottern Recogn. Left,, vol,
17, pp. I 1571160, 1996.
[22]. 8. 8. Choudhuri ond A. Rosenfeld, A modif\ed
hausdorff d\stance between fuzzy sets, Inform. Sci., vol,
118, pp. 15917 I , 1999.
[23]. R. Lowen ond W Peelers, Distance between fuzzy
sets representing grey level Images, Fuzzy Sets Syst., vol,
99, pp~ I 35149, 1998 ,
[24]. L. Koczy ond K. Hiroto, Ordering, distance and
c\oseness of fuzzy sets, Fuzzy Sets Syst., Vol. 59, pp.
281293, 1993.
[25]. S.Guilloume ond 8.Chornomordic, Generating an
\nterpretab\e Family of Fuzzy Part\fions From Data, IEEE
Trons. Fuzzy Systems I 2, June 2004.
[26]. J.-S.R. Jong, Se\f-\earning fuzzy contro\\ers based on
tempora\ backpropagation, IEEE Trons. Neurol Networks
(1992) 714723.
[27]. G.C. Mouzouris, J.M. Mendel, Dynamic non-
slngleton fuzzy \ogic systems for non\\near mode\\ng, IEEE
Trons. Fuzzy Systems 5 (1997) 199208.
[28]. J.8.Theochoris, G. Vochtsevonos, Recurs\ve
learning algorithms for training fuzzy recurrent mode\s,
Internet. J, InteII, Syst. 1 I (1996) 10591098 ,
[29]. T. Tokogi, M. Sugeno, Fuzzy ident\:cation ofsystems
and \ts app\ications, IEEE Trons. Systems, Mon, Cybernet,
15 (1985) I I 6132.
[30]. C.-H. Lee, C.-C. Tong, Ident\fication and contro\ of
dynamic systems using recurrent fuzzy neural networks,
IEEE Trons. Fuzzy Systems 8 (2000) 349366 ,
[32]. A. Mostorocostos, John 8. Theochoris, An
orthogonal least-squares method for recurrent fuzzy-
neural modelling, Fuzzy Sets ond Systems 140 (2003)
285300
[33]. M"8etnes, R.8obuisko, U.Koymok, ond H.R.Nouto
Lemke: Similarity Measures In Fuzzy Rule Base
Slmplification, IEEE Trons. Systems Mon Cybernet. Port B,
vol. 28, June 1998
[34]. D.F. Li ond C.T. Cheng, New similarity measures of
intuifionistic fuzzy sets and app\ication to pattern
recognifion, Pottern Recognition Letters 23, 221-225,
(2002).
[35]. RR Angelov, Evolving Rule-Dosed Models: A Tool for
Design of Flexible Adoptive Systems, Physico-Verlog,
Springer, Heidelberg, 2002.
[36]. R Angeiov, R. Guthke, A GA-bosed opprooch to
optimizotion of bioprocesses described by fuzzy rules, J.
8loprocess Eng. 1 6 (1997) 299301 .
[37]. 8. Corse, TC. Fogorty, A. Munro, Evolving fuzzy rule-
Dosed controllers using GA, Fuzzy Sets ond Systems 80
(1996) 273294,
[38]. Plomen R Angelov, An evolutionary approach to
fuzzy ru\e-based model synthesis using indices for ru\es,
Fuzzy Sets ond Systems I 37 (2003) 325338
[39]. I.Rojos, H.Pomores, J.Ortega ond A.Prieto. Self-
Orgonized Fuzzy System Generotion from Troining
Exomples. IEEE TrOns, Fuzzy Syst, , Vol.. 8, NO, I , FEBRUARY
2000 23
[40]. F.Y.Cheng, 8.8. MocDonold, ond oil. A Prospect\ve
Mu\ticenter Study of Staphy\ococcus aureus Bacteremia
\ncidence of Endocard\tis, RiskFactors for Mortaii\y and
C\\nica\ \mpact of Methici\\in Resistance Medicine _
Volume 82, Number 5, September 2003
[41]. S.H.Kiml, W.8.Porkl, ond oil. Outcome of
inoppropriote initiol ontimlcrobiol treotment in potients
with methicillin-resistont Stophylococcus oureus
[42]. F.Aversa, E.Gronda, S.Piuuti and C.Aragno. A Fuzzy
Logic Approach to Decision Support in Medicine KeII s.r.I.,
ViaE.Q. Visconti, 8 00193 Rome Italy.
[43]. Le Conseil medical du Canada. Analyses de
lab orat oireVal eurs d e referenc e . www. m cc , ca/
Objectives online/objectives,pl?lang=french&loc=valu
[44]. M.Y. Chen, D.A. Linkens RuIe-base self-generation
and simplification for data-dri\/en fuzzy models Fuzzy Sets
and Systems 142 (2004) 243265
[45]. A.E. Gaweda,, and J.M. Zurada, Data-Driven
Linguistic Modeling Using Relational Fuzzy Rules IEEE
Trans. Fuzzy Syst., Vol, . 11, NO. I ,pp I 21, February 2003