References
[1]. Angoff, W. H. (1993). Perspectives on differential item
functioning methodology. In P. W. Holland & H. Wainer
(Eds.), Differential item functioning (pp. 3-24). Hillsdale,
NJ: Erlbaum.
[2]. Angoff, W. H. (September 1972). A technique for the
investigation of cultural differences. Paper presented at
the annual meeting of the American Psychological
Association, Honolulu.
[3]. Borsboom, D., Mellenbergh, G. J., & van der Linden,
W. J. (2002). Different kinds of DIF: A distinction between
absolute and relative forms of measurement invariance
and bias. Applied Psychological Measurement, 26, 433-
450.
[4]. Buu, Y. A. (2003). Statistical analysis of rater effects.
Unpublished doctoral dissertation, University of Florida,
Gainesville, FL.
[5]. Camilli, G., & Shepard, L. A. (1987). The inadequacy
of ANOVA for detecting test bias. Journal of Educational
Statistics, 12, 87-99.
[6]. Cardall, C., & Coffman, W. E. (1964). A method for
comparing the performance of different groups on the
items of a test. (No. Research Bulletin 64-61). Princeton,
N.J: Educational Testing Service.
[7]. Chaimongkol, S. (2005). Modeling differential item
functioning (DIF) using multilevel logistic regression
models: A Bayesian perspective. Unpublished doctoral
dissertation, Florida State University, Tallahassee, FL.
[8]. Cole, N. S. (1978). Approaches to examining bias in
achievement test items. Paper presented at the national
meeting of the American Personnel and Guidance
Association, Washington, DC.
[9]. Cole, N. S., & Moss, P. A. (1989). Bias in test use. In R. L.
Linn (Ed.), Educational Measurement (3rd ed., pp. 201-
219 ) . NewYork : American Council on
Education/Macmillan.
[10]. Holland, P. W., & Thayer, D. T. (1988). Differential item
performance and the Mantel-Haenszel procedure. In H.
Wainer & H. I. Braun (Eds.), Test validity (pp. 129-145).
Hillsdale, NJ: Lawrence Erlbaum.
[11]. Holland, P. W., & Wainer, H. (Eds.). (1993). Differential
item functioning. Hillsdale, NJ: Lawrence Erlbaum
Associates.
[12]. Hunter, J. E. (1975). A critical analysis of the use of
item means and item-test correlations to determine the
pressure or absence of content bias in achievement test
items. Paper presented at the National Institute of
Education conference on test bias, Annapolis, MD.
[13]. Jensen, A. R. (1980). Bias in mental testing. New York:
Free Press.
[14]. Kamata, A., & Binici, S. (2003). Random-effect DIF
analysis via hierarchical generalized linear models.
Paper presented at the annual meeting of the
Psychometric Society, Sardinia, Italy.
[15]. Kamata, A., & Vaughn, B. K. (2004). An introduction
to differential item functioning analysis. Learning
Disability: A Contemporary Journal, 2(2), 49-69.
[16]. Lord, F. M. (1977). A study of item bias, using item
characteristic curve theory. In Y. H. Poortinga (Ed.), Basic
problems in cross-cultural psychology (pp. 19-29).
Amsterdam: Swets & Zeitlinger.
[17]. Raudenbush, S. W., Bryk, A. S., Cheong, Y. F., &
Congdon, R. T. (2000). HLM 5: Hierarchical linear and
nonlinear modeling [Computer Software]. Lincolnwood,
IL: Scientific Software International, Inc.
[18]. Raudenbush, S. W., Bryk, A. S., & Congdon, R. T.
(2005). HLM 6: Hierarchical linear and nonlinear
modeling (Version 6.02) [Computer software].
Lincolnwood, IL: Scientific Software International, Inc.
[19]. Raudenbush, S. W., Yang, M. l., & Yosef, M. (2000).
Maximum likelihood for hierarchical models via high
order, multivariate LaPlace approximation. Journal of Computational and Graphical Statistics, 9(1), 141-157.
[20]. Raudenbush, S. W., Yang, M.-L., & Yosef, M. (2000).
Maximum likelihood for generalized linear models with
nested random effects via high-order, multivariate
Laplace approximation. Journal of Computational and
Graphical Statistics, 9, 141-157.
[21]. Rock, D. A., Pollack, J. M., & Quinn, P. (1995).
Psychometric Report for the NELS:88 Base Year through
Second Follow-Up. National Education Longitudinal
Study of 1988. (No. NCES-95-382). Washington, DC:
National Center for Education Statistics.
[22]. Shealy, R. T., & Stout, W. F. (1993b). An item response
theory model for test bias and differential item
functioning. In P. Holland & H. Wainer (Eds.), Differential
item functioning. Hillsdale, NJ: Erlbaum.
[23]. Shealy, R. T., & Stout, W. F. (1993a). A model-based
standardization approach that separates true bias/DIF
from group ability differences and detects test bias/DTF as
well as item bias/DIF. Psychometrika, 58, 159-194.
[24]. Shepard, L. A. (1981). Identifying bias in test items. In
B. F. Green (Ed.), New direction in testing and
measurement: Issues in testing, coaching, disclosure
and test bias (Vol. 11, pp. 79-104). San Francisco: Jossey- Bass.
[25]. Swanson, D. B., Clauser, B. E., Case, S. M., Nungster,
R. J., & Featherman, C. (2002). Analysis of differential item
functioning (DIF) using hierarchical logistic regression
models. Journal of Educational and Behavioral Statistics,
27, 53-75.
[26]. Vaughn, B. K. (2006). A Hierarchical Generalized
Linear Model of Random Differential Item Functioning for
Polytomous Items: A Bayesian Multilevel Approach.
Unpublished doctoral dissertation, Florida State University,
Tallahassee, FL.
[27]. Whitmore, M. L., & Schumacker, R. E. (1999). A
comparison of logistic regression and analysis of variance
differential item functioning detection methods.
Educational and Psychological Measurement, 59, 910-
927.
[28]. Williams, V. S. L. (1997). The "unbiased" anchor:
Bridging the gap between DIF and item bias. Applied
Measurement in Education, 10, 253-267.
[29]. Yang, M. L. (1988). Increasing the efficiency in
estimating multilevel Bernoulli models. Unpublished
doctoral dissertation, Michigan State University, East
Lansing, MI.