References
[1]. R. Srikant, and R. Agrawal, (1996). “Mining
Quantitative Association Rules in Large Relational Tables”.
ACMSIGMOD,International Conference on
Management of Data, pp.1-12, Montreal, Canada.
[2]. Chan, C.C. Keith, and A.U. Wai-Ho, (1997). “Mining
fuzzy association rules”. In: Proceedings of the Sixth
International Conference on Information and
Knowledge Management, ACM.
[3]. M. Kuok, A.W. C. Fu, and M. H. Wong, (1998). “Mining
Fuzzy Association Rules in Databases”. ACM SIGMOD
Record, Vol. 27, No. 1, pp. 41-46.
[4]. W. Au, and K. Chan, (1998). “An Effective Algorithm for
Discovering Fuzzy Rules in Relational Databases”.
Proceeding of the 1998 IEEE International Conference on
Fuzzy Systems, pp. 1314-1319, Anchorage, Alaska.
[5]. T. P. Hong, C. S. Kuo, and C. S. Chi, (2001). “Trade-off
between Computation Time and Number of Rules for
Fuzzy Mining from Quantitative Data”. International
Journal of Uncertainty, Fuzziness and Knowledge-Based
System, Vol. 9, No. 5, pp. 587- 604.
[6]. K. Hirota, and W. Pedrycz, (1999). “Fuzzy Computing
for Data Mining”. Proceedings of the IEEE, Vol. 87, No. 9,
pp. 1575.
[7]. W. Zhang, “Mining Fuzzy Quantitative Association
rules”. Proceeding of the 11th International Conference
on Tools with A.I., pp. 99-102, Chicago, IL, USA.
[8]. J. Han, J. Pei, and Y. Yin, (2000). “Mining frequent
patterns without candidate generation”. The 2000 ACM
SIGMOD International Conference on Management of
Data, Vol. 29, No. 2, pp. 1-12.
[9]. H. Ishibuchi, T. Nakashima, and T. Murata, (2001).
“Fuzzy Data Mining: Effect of Fuzzy Discretization”.
Proceeding of 2001 IEEE International Conference on
Data Mining, pp.241- 248.
[10]. S. Mitra, S. Pal, and P. Mitra, (2002). “Data Mining in
Soft Computing Framework: A Survery”. IEEE Transactions
on Neural Networks, Vol. 13, No. 1.
[11]. G. Chen, and Q. Wei, (2002). “Fuzzy Association
Rules and the Extended Mining Algorithm”. Information
Sciences, Vol. 147, pp.201-228.
[12]. Y. C. Hu, R. S. Chen, and G. H. Tzeng, (2003).
“Discovering fuzzy Association Rules using Fuzzy Partition
Methods”. Knowledge Based Systems, Vol. 16, pp. 137-147.
[13]. Tzung-Pei Hong, Chan - Sheng Kuo, and Shyue -
Liang Wang, (2004). “A fuzzy AprioriTid mining algorithm
with reduced computational time”. Applied Soft
Computing, Vol. 5, No. 1, pp. 1-10.
[14]. S. Papadimitriou, and S. Mavroudi, (2005). “The fuzzy
frequent pattern tree” In: The WSEAS International
Conference on Computers, pp. 1-7.
[15]. E Ramaraj, K Rameshkumar, and N Venkatesan,
(2008). “A better performed transaction reduction
algorithm for mining frequent itemset from large
voluminous database”. Proceedings of the 2nd National
Conference, INDIACOM-2008, Vol. 5, pp. 1-10.
[16]. Reza Sheibani, and Amir Ebrahimzadeh, (2008). “An
Algorithm For Mining Fuzzy Association Rules”.
Proceedings of the International Multi Conference of
Engineers and Computer Scientists, Vol. 1, pp. 486-490.
[17]. Ashish Mangalampalli, and Vikram Pudi, (2010).
“FPrep: Fuzzy Clustering driven Efficient Automated Preprocessing
for Fuzzy Association Rule Mining”. IEEE Intl
Conference on Fuzzy Systems (FUZZ-IEEE).
[18]. K. Suriya Prabha, and R. Lawrance, (2012). “Mining
Fuzzy Frequent itemset using Compact Frequent Pattern
(CFP) tree Algorithm”. International Conference on
Computing and Control Engineering (ICCCE 2012).
[19]. Sunita Soni, and O.P. Vyas, (2012). “Fuzzy Weighted
Associative Classifier: A Predictive Technique For Health
Care Data Mining”. International Journal of Computer Science, Engineering and Information Technology
(IJCSEIT), Vol. 2, No. 1.
[20]. J. Preethi, (2013). “Temporal outlier detection using
fuzzy logic and evolutionary computation”. International
Conference on Optical Imaging Sensor and Security
(ICOSS), pp. 2-3.
[21]. Anubha Sharma, and Nirupama Tiwari, (2014). “A
Survey of Fuzzy Based Association Rule Mining to Find Cooccurrence
Relationships”. IOSR Journal of Computer
Engineering (IOSR-JCE), Vol. 16, No. 1, pp. 83-87.
[22]. Urvi A. Chaudhary, and Mahesh Panchal, (2014).
“Mining Multilevel Fuzzy Association Rule from Transaction
Data”. International Journal of Computer Science and
Mobile Computing, Vol. 3, No. 2, pp. 773-778.