References
[1]. R. Garcia, J. Contreras, M. Van Akkeren, and J.
Garcia, (2005). “A GARCH forecasting model to predict
day-ahead electricity prices”. IEEE Trans.Power Syst., Vol.
20, No. 2, pp. 867– 874.
[2]. F. Nogales, J. Contreras, A. Conejo, and R. Espinola,
(2002). “Forecasting next-day electricity prices by time
series models”. IEEE Trans. Power Syst., Vol. 17, No. 2, pp.
342-348.
[3]. Wang A, Ramsay B, (1997). “Prediction of system marginal price in the UK power pool using neural
networks”. IEEE, International Conference on Neutral
Networks, Vol. 4, pp. 2116-2120.
[4]. G. Li, C.-C. Liu, C. Mattson, and J. Lawarree, (2007).
“Day-a head Electricity price forecasting in a grid
environment”. IEEE Trans. Power Syst., Vol. 22, No. 1, pp.
266–274.
[5]. Y. Y. Hong and C.-Y. Hsiao, (2002). “Locational
marginal price forecasting in deregulated electricity
markets using artificial intelligence”. Proc. Inst. Elect. Eng.,
Gen., Transm., Distrib., Vol. 149, No. 5, pp. 621–626.
[6]. P. Mandal, A. Srivastava, and J.-W. Park, (2009). “An
effort to optimize similar days parameters for ANN-based
electricity price forecasting”. IEEE Trans. Ind. Appl., Vol. 45,
No. 5, pp. 1888-1896.
[7]. M. Stevenson, (2001). “Filtering and Forecasting Spot
Electricity Prices in the Increasingly Deregulated Australian
Electricity Market”. Quantitative Finance Research
Centre, University of Technology, Sydney.
[8]. P. Mandal, T. Senjyu, N. Urasaki, T. Funabashi, and A.
Srivastava, (2007). “A novel approach to forecast
electricity price for PJM using neural network and similar
days method”. IEEE Trans. Power Syst., Vol. 22, No. 4, pp.
2058-2065.
[9]. K. Meng, Z. Dong, and K. Wong, (2009). “Selfadaptive
radial basis function neural network for shortterm
electricity price forecasting”. IET Gen.,Transm.,
Distrib., Vol. 3, No. 4, pp. 325–335.
[10]. Vemuri V.R. and Rogers R.D, (1994). “Artificial Neural
Networks Forecasting Time Series”. IEEE Computer Society
Press.
[11]. Yamin, H., Shahidehpour, S., Li, Z, (2004). “Adaptive
short-term electricity price forecasting using artificial
neural networks in restructured power markets”. Electrical
Power and Energy Systems, Vol. 26, No. 8, pp. 571- 581.