References
[1]. Ahn, Y. and Logan, B.E., (2013). “Saline catholytes as
alternatives to phosphate buffers in microbial fuel cells”.
Bioresource Technology, Vol. 132, pp. 436-439.
[2]. Angenent, L.T. et al., (2004). “Production of bioenergy
and biochemicals from industrial and agricultural waste
water”. Trends in Biotechnology, Vol. 22(9), pp.477-485.
[3]. Bond, D.R. and Lovley, D.R., (2003). “Electricity
production by Geobacter sulfur reducens attached to
electrodes”. Applied and Environmental Microbiology, Vol.
69(3), pp. 1548 -1555.
[4]. Du, Z., Li, H. and Gu, T., (2007). “A state of the art review
on microbial fuel cells: A promising technology for
wastewater treatment and bioenergy”. Biotechnology
Advances, Vol. 25(5), pp. 464-482.
[5]. Franks, A.E. and Nevin, K.P., (2010). “Microbial Fuel
Cells: A Current Review”. Energies, Vol. 3(5), pp. 899-919.
[6]. Fu, C. and Wu, W., (2010). “Electricity Generation by
Photo synthetic Biomass”. SCIYO. COM, 125(September).
[7]. Gil, G.-C.et al., (2003). “Operational parameters
affecting the performance of a mediator-less microbial
fuel cell”. Biosensors and Bioelectronics, Vol. 18(4), pp. 327-
334.
[8]. Gorby, Y.A. et al., (2006). “Electrically conductive
bacterial nanowires produced by Shewanellaoneidensis
strain MR-1 and other microorganisms”. Proceedings of the
National Academy of Sciences of the United States of
America, Vol. 103(30), pp. 11358 -11363.
[9]. Hernandez, M.E., Kappler, A. and Newman, D.K, (2004). “Phenazines and other redox-active antibiotics
promote microbial mineral reduction”. Applied and
Environmental Microbiology, Vol. 70(2), pp. 921- 928.
[10]. Hernandez, M.E. and Newman, D.K., (2001).
“Extracellular electron transfer”. Cellular and Molecular Life
Sciences: CMLS, Vol. 58(11), pp.1562-1571.
[11]. Jang, J.K. et al., (2004). “Construction and operation
of a novel mediator and membrane-less microbial fuel
cell”. Process Biochemistry, Vol. 39(8), pp.1007-1012.
[12]. Kim, H.J. et al., (2002). “A mediator-less microbial fuel
cell using a metal reducing bacterium ,
Shewanellaputrefaciens”. Enzyme and Microbial
Technology, Vol. 30(2), pp.145-152.
[13]. Kumar, S., Kumar, H.D. and K, G.B., (2003). “A study on
the electricity generation from the cow dung using
microbial fuel cell”. J. Biochem Tech, Vol. 3(4), pp.442-447.
[14]. Logan, B.E., (2008). Microbial Fuel Cells. John Wiley &
Sons.
[15]. Mokhtana, N..et al., (2012). “Bioelectricity generation
in biological fuel cell with and without mediators”. World
Applied Sciences Journal, Vol. 18(4), pp.559-567.
[16]. Najafpour, G.D., Daud, W.R.W. and Ghoreyshi, A. A.,
(2009). “Low Voltage Power Generation in a Biofuel Cell
Using Anaerobic Cultures”. World Applied Sciences, Vol.
6(11), pp.1585-1588.
[17]. Rabaey, K. et al., (2003). “A microbial fuel cell
capable of converting glucose to electricity at high rate
and efficiency”. Biotechnology Letters, Vol. 25(18), pp.1531-
1535.
[18]. Rabaey, K., Lissens, G. and Verstraete, W., (2005a).
“Microbial fuel cells: performances and perspectives”. In
Biofuels for fuel cells: Renewable energy from biomass
fermentation”. IWA Publishing, pp. 377-399.
[19]. Rabaey K. et al., (2005b). “Microbial phenazine
production enhances electron transfer in biofuel cells”.
Environmental Science and Technology, Vol. 39(9), pp.
3401-3408.
[20]. Rosso, K.M. et al., (2003). “Nonlocal bacterial electron
transfer to hematite surfaces”. Geochimica et
Cosmochimica Acta, Vol. 67(5), pp.1081-1087.
[21]. Schwartz, K., (2007). “Microbial fuel cells: design
elements and application of a novel renewable energy
source”. MMG 445 Basic Biotechnology e-Journal, Vol. 3,
No. 1, pp.20-27.
[22]. Wilkinson, S., (2000). “‘Gastrobots' - benefits and
challenges of microbial fuel cells in food powered robot
applications”. Autonomous Robots, Vol. 9(2), pp. 99-111.
[23]. Wrighton, K.C. and Coates, J.D., (2009). “Microbial
Fuel Cells: Plug-in and Power-on Microbiology”. Microbe,
Vol. 4(6), pp. 281-287.