References
[1]. Mikael, Eriksson., Filip., Bergman., & Staffan,
Jacobson., (2002). “On the nature of tribological contact in
automotive brakes”. Wear, Vol. 252, pp. 26-36.
[2]. Mohsen Mosleh., Peter J, Balu., & Delia Dumitrescu.,
(2004). “Characteristics and morphology of wear particles
from laboratory testing of disk brake materials”. Wear, Vol.
256 (11-12), pp. 1128-1134.
[3]. Osterle, W., Klob, H., Urban, I., & Dmitriev, A. I., (2007).
“Towards a better understanding of brake friction
materials”. Wear, Vol. 263, pp.1189-1201.
[4]. Daniel, Thuresson., (2004). “Influence of material
properties on sliding contact-braking applications”. Wear,
Vol. 257, pp. 451-460.
[5]. Chapman, T. R., Niesz, D. E., Fox, R. T., & Fawcett, T.,
(1999). “Wear-resistant aluminum-boron-carbide cermets
for automotive brake applications”. Wear, Vol. 236, pp. 81-
87.
[6]. Singh, O. P., Mohan, S., Venkata Mangaraju, K.,
Jayamathy, M., & Babu R., (2010). “Engineering Failure
Analysis”. Wear, Vol. 17, pp. 1155-1172.
[7]. Hoyer, L. G., Allan Bach., Georg., Nielsen, T., & Morgen,
Per., (1999). “Tribological properties of Automotive Disc
brake with solid lubricants”. Wear, Vol. 232, pp.168-175.
[8]. Joseph, A. P., Lai C. S., Zhao Jiye, & Loader Lyndon.,
(2002). “Brake squeal: A literature review”. Applied
Acoustics, Vol. 63, pp. 391-400.
[9]. Shaoyang Zhang, & Fuping Wang, (2007).
“Comparison of friction and wear performance of brake
material dry sliding against two aluminum matrix
composites reinforced with different SiC particles”. Journal
of Materials processing Technology, Vol.182, pp. 122-127.
[10]. Cho M.H., Kim S.J., Basch R.H., Fash J.W., & Jang H.,
(2003). “Tribological study of gray cast iron with automotive
brake linings: The effects of rotor microstructure”. Tribology
International, Vol. 36, pp. 537-545.
[11]. Varuzan M., Kevorkijan, Dragojevic Vuk, Tomaz
Smolar, & Davorin Lenarcic, (2002). “A brake disc in Albased
composite”. MTAEC 9, Vol. 36(6), pp. 421. ISSN 1580-
2949.
[12]. Mustafa Boz, & Adem Kurt, (2007). “The effect of Al O 2 3
on the friction performance of automotive brake friction
materials”. Tribology International. Vol. 40, pp. 1161-1169.
[13]. Cueva, G., Sinatora, A., Guesser, W. L., & Tschiptschin,
A.P, (2003). “Wear resistance of cast irons used in brake disc
rotors”. Wear, Vol. 255, pp. 1256-1260.
[14]. Jang, H., Ko, K., Kim, S.J., Basch, R.H., & Fash, J.W,
(2004). “The effect of metal fibers on the friction
performance of automotive brake friction materials”. Wear,
Vol. 256, pp.406-414.
[15]. Thomas, J., & Mackin, (2002). “Thermal cracking in
disc brakes”. Engineering Failure Analysis. Vol. 9, pp.63-76.
[16]. Zhiyong, Yang., Jianmin, Han., Shihai, Cui., Suk-Bong
Kang., & Jung-Moo, Lee, (2006). “Solidification simulation
of a SiCp/Al disk brake casting”. Journal of Ceramic
Processing Research. Vol.7, No.4, pp.363-366.
[17]. Peter. J, Balu., & Harry, M, (2003). “Characteristics of
wear particles produced during friction tests of
conventional and unconventional disc brake materials”.
Wear, Vol. 255, pp.1261-1269.
[18]. Hiroaki Nakanishi, & Kenji Kakihara, (2002).
“Development of aluminum metal matrix composites (Al-
MMC) brake rotor and pad”. JSAE Review, Vol. 23, pp.365-
370.
[19]. Boniardi ,M., Tagliabue, C., Gotti, G., & Perricone, G,
(2006). “Failure analysis of a motorcycle brake disc”.
Engineering Failure Analysis, Vol. 13, pp. 933-945.
[20]. Yoshio, Jimbo., & Takahiro, Mibe, (2000).
“Development of High Thermal Conductivity Cast Iron for
Brake Disk Rotors”. Nissan Motor Co., Ltd. 900002, pp. 1-7.
[21].Paul, Wycliffe, (2007). “Friction and Wear of Duralcan
Reinforced Aluminum Composites in Automotive Braking
Systems”. Alcan International Ltd., 930187, pp.300-311.
[22]. Natarajan, N., Vijayarangan, S., & Rajendran, I,
(2006). “Wear behaviour of A356/25SiC aluminium matrix p
composites sliding against automobile friction material”.
Wear, Vol. 261, pp. 812-822.
[23]. Junichiro Yamabe, Masami ,Takagi, Toshiharu Matsui,
Takashige Kimura, and Masanori Sasaki, (2002).
“Development of disc brake rotors for truck with high
thermal fatigue strength”. JSAE Review, Vol. 23, pp. 105-112.S
[24]. Ratnesh Dwivedi, (1992). “Development of Advanced
Reinforcement Aluminum Brake Rotors”. SAE Technical
Paper Series, 950264, Warrendale, USA.
[25]. Jason Sin Hin Lo, & Nepean, (2003). “Hybrid metal
matrix composites”. US 0175543A1.
[26]. Naresh Prasad, (2009). “Development and
characterization of metal matrix composites using red
mud an industrial waste for wear resistant applications”.
(Doctoral Dissertation), NIT Rourkela, pp. 30-44.
[27]. Mukundadas Prasanna Kumar, Kanakuppi
Sadashivappa, Gundenahalli Puttappa Prabhukumar, &
Satyappa Basavarajappa, (2006). “Dry Sliding Wear
Behaviour of Garnet Particles Reinforced Zinc-Aluminium
Alloy Metal Matrix Composites”. Material Science
(Medziagotyra), Vol. 12, No. 3, pp. 209-213, ISSN 1392-1320.
[28]. David E, Alman., (2000). “Properties of Metal Matrix
Composites”. ASM Handbook Composites. Vol. 21, pp.
838-858.
[29]. Aqida S.N, Ghazali M.I, & Hashim J, (2003). “The effect
of stirring speed and reinforcement particles on porosity
formation in cast MMC”. Journal Mechanical Engineering,
Vol. 16, pp. 22-30.