A Review on Single-Stage and Two-Stage Converter Using Photovoltaic Cell

Vikash Kumar Rai*, Krishna Pratap Singh**
* PG Scholar, Department of Electrical Engineering, Madan Mohan Malviya University of Technology, Gorakhpur, India.
** Associate Professor, Department of Electrical Engineering, Madan Mohan Malviya University of Technology, Gorakhpur, India.
Periodicity:February - April'2016
DOI : https://doi.org/10.26634/jps.4.1.5970

Abstract

In recent years, non conventional energy resources (solar energy, wind energy, tidal energy) has been the most effective utilization of generating electrical energy, and also widely used in transmission and distribution systems. In this paper, a study of two different photovoltaic systems, namely photovoltaic system using a single-stage converter and photovoltaic system using a two-stage converter has been analyzed. In a two-stage converter, the first stage has a DC-DC converter, which provides galvanic isolation and also changes the DC voltage level. The second stage has an inverter, which converts DC to AC and provides good quality current to the grid. In the single stage converter, flyback inverter is employed. This paper concludes with a discussion of the more efficient and reliable photovoltaic system between single and two stage systems.

Keywords

Photovoltaic Systems (PV), DC to DC Converter, DC to AC Converter, Flyback Inverter, PWM Inverter

How to Cite this Article?

Rai, V. K., and Singh, K. P. (2016).A Review on Single-Stage and Two-Stage Converter Using Photovoltaic Cell. i-manager’s Journal on Power Systems Engineering, 4(1), 32-37. https://doi.org/10.26634/jps.4.1.5970

References

[1]. S. B. Kjaer, J. K. Pedersen, and F. Blaabjerg, (2005). “A review of single-phase grid-connected inverters for photovoltaic modules”. IEEE Trans. Ind. Appl., Vol.41, No.5, pp.1292-1306.
[2]. M. Calais, J. Myrzik, T. Spooner, and V. G. Agelidis, (2002). “Inverters for single-phase grid connected rd photovoltaic systems-an overview”. In Proc. IEEE 33 Ann. PESC, pp.1995-2000.
[3]. R. H. Wills, S. Krauthamer, A. Bulawka, and J. P. Posbic, (1997). “The AC photovoltaic module concept,” in Proc. nd 32 IECEC, Vol.3, pp.1562-1563.
[4]. N. Kasa, T. Iida, and A.K.S. Bhat, (2005). “Zero-voltage transition fly-back inverter for small scale photovoltaic th power system”. In Proc. IEEE 36 PESC, pp.2098-2103.
[5]. Y. Chen and K.M. Smedley, (2004). “A cost-effective single-stage inverter with maximum power point tracking”. IEEE Trans. Power Electron., Vol.19, No.5, pp.1289-1294.
[6]. T. Shimizu, K. Wada, and N. Nakamura, (2006). “Flyback-type single-phase utility interactive inverter with power pulsation decoupling on the DC input for an AC photovoltaic module system”. IEEE Trans. Power Electron., Vol.21, No.5, pp.1264-1272.
[7]. G. H. Tan, J. Z. Wang, and Y. C. Ji, (2007). “Softswitching flyback inverter with enhanced power decoupling for photovoltaic applications”. IET Elect. Power Appl., Vol.1, No.2, pp.264-274.
[8]. Y.-H. Kim, J.-G. Kim, Y.-H. Ji, C.-Y. Won,and T.-W. Lee, (2010). “Fly-back inverter using voltage sensorless MPPT for AC module systems”. In Proc. IPEC, pp.948-953.
[9]. Y. Li and R. Oruganti, (2012). “A low cost flyback CCM inverter for AC module application”. IEEE Trans. Power Electron., Vol.27, No.3, pp.1295-1303.
[10]. S. Jain and V. Agarwal, (2007). “A single-stage grid connected inverter topology for solar PV systems with maximum power point tracking”. IEEE Trans. Power Electron., Vol.22, No.5, pp.1928-1940.
[11]. R. C. Variath, M. A. E. Andersen, O. N. Nielsen, and A. Hyldgard, (2010). “A review of module inverter topologies suitable for photovoltaic systems”. In Conf. Proc. IPEC, 2010, pp.310-316.
[12]. E.S. Sreeraj, K. Chatterjee, and S.Bandyopadhyay, (2013). “One-cycle-controlled single-stage single-phase voltage-sensor less grid-connected PV system”. IEEE Trans. Ind. Electron., Vol.60, No.3, pp.1216-1224.
[13]. Y.-H. Kim, Y- H .Ji, J.-G. Kim, Y.-C. Jung, and C.-Y.Won, (2013). “A new control strategy for improving weighted efficiency in photovoltaic AC module type interleaved flyback inverters”. IEEE Trans. Power Electron., Vol.28, No.6, pp.2688-2699.
[14]. S.-M. Chen, T.-J. Liang, L.-S.Yang, and J.-F. Chen, (2013). “A boost converter with capacitor multiplier and coupled inductor for AC module applications”. IEEE Trans. Ind. Electron., Vol.60, No.4, pp.1503-1511.
[15]. D. C. Martins and R. Demonti, (2002). “Grid connected PV system using two energy processing stages”. In Conf. Rec. 29th IEEE Photovoltaic. Spec. Conf., pp.1649-1652.
[16]. A. Chen, S. Daming, D. Chunshui, and C. Zhang, (2010). “High-frequency DC link flyback single phase inverter for grid-connected photovoltaic system”. In Proc. 2nd IEEE Int. Symp. PEDG, pp.364-367.
[17]. M. Telefus, A. Shteynberg, M. Ferdowsi, and A. Emadi, (2004). “Pulse train control technique for flyback converter”. IEEE Trans. Power Electron., Vol.19, No.3, pp.757-764.
[18]. W. Choi and J. Lai, (2010). “High-efficiency gridconnected photovoltaic module integrated converter system with high-speed communication interfaces for small-scale distribution power generation”. Solar Energy, Vol.84, No.4, pp.636-649.
[19]. I. Abdalla, J. Corda, and L. Zhang, (2013). “Multilevel DC-link inverter and control algorithm to overcome the PV partial shading”. IEEE Trans. Power Electron., Vol.28, No.1, pp.14-18.
[20]. J. Chavarria, D. Biel, F. Guinjoan, C. Meza, and J. J. Negroni, (2013). “Energy balance control of PV cascaded multilevel grid-connected inverters under level-shifted and phase-shifted PWMs”. IEEE Trans. Ind. Electron., Vol.60, No.1, pp.98-111.
[21]. Q. Li and P. Wolfs, (2008). “A review of the single phase photovoltaic module integrated converter topologies with three different DC link configurations”. IEEE Trans. Power Electron., Vol.23, No.3, pp.1320-1333.
[22]. N. Kasa, T. Iida, and L. Chen, (2005). “Flyback inverter controlled by sensorless current MPPT for photovoltaic power system”. IEEE Trans. Ind. Electron., Vol.52, No.4, pp.1145-1152.
[23]. A. C. Kyritsis, E. C. Tatakis, and N. P. Papanikolaou, (2008). “Optimum design of the current-source flyback inverter for decentralized grid-connected photovoltaic systems”. IEEE Trans. Energy Convers., Vol.23, No.1, pp.281-293.
[24]. Y. Li and R. Oruganti, (2008). “A flyback-CCM inverter scheme for photovoltaic AC module application”. In Proc. AUPEC, pp.1-6.
[25]. Q. Mo, M. Chen, Z. Zhang, M. Gao, and Z. Qian, (2011). “Research on a non complementary active clamp flyback converter with unfolding DC-AC inverter for decentralized grid-connected PV systems”. In Proc. IEEE ECCE, pp.2481-2487.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.