De-Noising is a crucial problem for various types of image in the digital image processing. The main objective is to be fade away the noise factor by transfiguring into realistic Image as well as safeguarding the real quality and structure of the Image. Much hardware equipment such as digital electronic devices may suffer some issues that are noisy and blurred images due to degradation in the quality of the visioning image. These noisy images and blur images come under the problem of less information about the working object in a capturing environment. In this paper, the De-Noising technique has been proposed at different standard deviation for each processed image to check that at what level of noise it may work. In this proposed technique, wavelet is applied to a Noisy Image and further on the decomposed sections, SPG-PCA is used for quality enhancement. It consists of two stages: image estimation by removing the noise and further refinement of the first stage. Noise is removed at the maximum extent in first stage and the application of NPG improves the visualization of the De-Noised Image. A different standard deviation helps to optimize the original image which is based on the De-Noising scheme using quality matrices. The proposed technique can also be applied on satellite images, television pictures, medical images, etc. In this research work optimized De-Noising matrices like PSNR, SSIM, Maximum Difference and Normalized Cross-Correlation for the Dataset. Experimental results show a much improved performance of the proposed filters in the presence of Gaussian noise that are analyzed and illustrated.