Multi-Population Genetic Algorithms for Tuning Fuzzy Logic Controller

Munther N. Al-Tikriti*, Rokaia Sh. Al-Joubori**
* Professor of Control Engineering Faculty of Engineering, Philodeiphlo University
** Assistont Lecturer in System Progromming ond Advonced Digifol Systems, Department of Computer ond Software Engineering College of Engineering Ai-Mustonsiryoh Universify
Periodicity:October - December'2007
DOI : https://doi.org/10.26634/jse.2.2.593

Abstract

Reducing the time required to reach acceptable solutions was the main goal behind parallel implementation of genetic algorithms (Gas). Starting at this point the presented paper introduces a parallel implementation of multi-population genetic algorithms to tune the fuzzy membership functions of a fuzzy logic controller (FLC) with the goal to improve its performance. The genetically tuned controller is implemented for both linear and nonlinear control systems.

Keywords

How to Cite this Article?

Munther N. Al-Tikriti and Rokaia Sh. Al-Joubori (2007). Multi-Population Genetic Algorithms for Tuning Fuzzy Logic Controller. i-manager’s Journal on Software Engineering, 2(2), 56-63. https://doi.org/10.26634/jse.2.2.593

References

[1].M. GOIO'n, ond R Cuesto, Eds,) pp~ 33-57. John Wiley & Sons. (1995) ,
[2]. Bodenhofer U. ond Herrero F., "Ten Lectures on Genetic Fuzzy Systems" Softwore Competence Center Hogenberg (SCCH), I 997.
[3]. O. Cordo'n, F. Herrero, E. Herrero-Viedmo, ond M. Lozono "Genetic Algorithms ond Fuzzy logic in Control Processes", Technion| Report # DECSAI- 95 I 09 , Deportment of Computer Science ond Artificiol Intelligence, Univ, of Gronodo, MOrch 1995.
[4]. F. Herrero ond L. Mogdoleno, "Genetic Fuzzy Systems: A Tutorlol", Totro Mountoins Mothemoticol Publicotions Vol. I 3 1997, 93- I 2 I R. Mesior, B~ Riecon (Eds, ) Fuzzy Structures. Current Trends. Lecture Notes of the Tutoriol: Genetic Fuzzy Systems. Seventh IFSA World Congress (IFSA97) Proge, June 1 997 .
[5]. W A. Forog, V. H. Quintono ond G . Lombert-Torres, " A Genetic-Hosed Neuro-Fuzzy Approoch for Modeling ond Control of Dynomicol Systems", IEEE Trons. Neurol Networks, vol, 9 No. 5, Sept, 1998, 7.
[6]. D. Ruon, " Intelligent Hybrid Systems: Fuzzy Logic, Neurol Networks, ond Genetic Algorlthms", Kluwer AcOdemic Publishers, I 99
[7]. Pohlheim H., "GEATbx: Genetic ond EvolutionOry Algorithm Toolbox for use with MATLAB version I ~92" User Guide, July I 997. ,
[8]. K. M. Possino, S. Yurkovich, "Fuzzy Control", Addison.. Wesley Longmon Inc. I 998
[9]. O. Cordo'n, F. Herrero, " A hybrid genetic olgorithm- evolution stfotegy process for looming fuzzy logic controller knowledge boses", In: F. Herrero ond J.L. Verdegoy, (Eds.) Genetic Algorithms ond Soft Computing, PhysicoVerlog, I 996.
[1O]. AI..Joubori Rokoio Sh.," Tuning of fuzzy logic controller using genetic olgorithms" M.Sc, Thesis, Elect. Eng. Deportment, Al-MustOnsiriyOh University October 2001.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.