This paper deals with maximizing the power output from wind turbines over, all the expected wind conditions, while minimizing construction costs. The wind turbine construction is complex due to the design of turbine blades. As such, the authors focus on minimizing the amount of materials required to make the blade, while maximizing the power output. The considered disciplines include, aerodynamics, structures, and control. By considering a range of incoming wind velocities that represents the possible operating conditions of the turbine, the expected power output and extreme structural load over this range can be calculated. To Further limit the design space, the authors made a three-bladed design with PVC (Poly Vinyl Chloride) blades. The authors choose three blades, because, an initial Design of Experiments (DOE) test showed that, the three blades’ performance and efficiency is higher than the four and five-bladed designs in almost all cases. The traditional wind turbine’s cut in speed is 4 m/sec and so, the authors are trying to design a turbine that starts producing power even at a wind speed of 3 m/sec. Designed and fabricated wind turbine with a control system allows it to direct the blades against the wind flowing direction.