References
[I ]. E. C. Yiu, Image classification using color cues and
texture orientation, Master's thesls, Department of EECS,
MIT, 1996.
[2]. M. Szummer and R. W Picard, Indoor-outdoor image
classification. Int. Workshop on Content-based access of
image and video databases, 1998,
[3]. M. M. Gorkhani and R. W. Picard, Texture orientation
for sorting photos. /nter- nationa/ conference on Pattern
recognltion, pages 459 -464, 1994,
[4]. A. B. Torralba and A. Oliva, Semantic organization of
scenes using discriminant structural templates.
Internatlona/ Conference on computer vlslon, pages
1253 -1258, vol, 2, 1999.
[5]. A. Vailaya and A. K. Jain, Reject option for VQ-based
bayesian classification. Internationa/ Conference on
pattern recognitlon, pages 48 - 5 I , 2000,
[6]. D. Forsyfh, J. Malik, M. Fleck, H. Greenspan, T. Leung,
S. Belongie, C. Carson, and C. Bregler, Finding pictures of
objects in large collections of images. Int. Workshop on
Object Recognltlon for Computer Vlslon, pages
355 - 360, 1996 ,
[7]. s. Haykin, Neural network: A comprehensive
foundation~ pages I 78 - 210, 2nd Edition, I 999~
[8]. S. Raudys, How good are support vector machines?
Neural Networks, vo/. 13, pages I 7 - I 9, 2000,
[9]. R. R Lippman, A critical overview of neural network
pattern classifiers. /EEE workshop on Neural Networks for
s/gnal processlng, pages 266 275, 1991 ,
[l0]. Y.-H. Pao, in Adaptlve pattern recognltlon and
neural networks, Addison-Wesley, 1989.
[I I ]. V. Vapnik, inThe nature of stat/stlcal leamlng theory,
springer-verlag, I 995.
[I 2]. R Clarkson and R J. Moreno, On the use of support
vector machines for phonetic classification. /EEE
/nternatlonal Conference on Acoustlcs, Speech, and
Signal Processlng, pages 585 -8, 1999
[I 3]. R. E. Karlson, D.J. Gorsich, and G . R. Gorhart, Target
class! -cation via support vector machines. Opt/ca/
Englneerlng, pages 704 - I I , 2000, vol, 39 .
[I 4]. C. J. C. Surges, A tutorial on support vector
machines for pattern recognition, Data m/nlng and
knowledge dlscovery, pages 955 - 974, vol. 2 I 998.
[I 5]. W A. Khatib, Y F. Day, A. Ghafoor, and R 8. Serra,
Semantic modeling and knowledge representation in
multimedia databases, /EEE transact/ons on know/- edge
and data englneerlng, pages 64- 80, 1999, vol, 1 I .
[I 6]. D. W. Aha and R. L. 8ankort, Feature selection for
case-based classification of cloud types: An empirical
comparison.AAA/, pages 106 - I I 2, 1994
[I 7]. H. Liu and R. Sotiono, Dimensionality reduction via
discretization~ Know/edge based systems, pages 67- 72,
no,9, 1 996.
[I 8]. R J. Devijvor and J. Kittler, Pattern recognition: A
statistical approach, Prent/ce Ha//, 1982,
[I 9]. N~ Wyse, R. Dubos, and A. K. Jain, A critical
evaluation of intrinsic dimensionality reduction
algorithms, Pattern Recogn/tlon In practlse. Morgan
Kaufmann., Pages 415 -425, 1980,
[20]. K. Fununaga, Introduction to statistical pattern
recognition.Academ/cpress, 1990.
[21]. M. Modrzojowski, Selection using rough sets theory,
European conference on Ma- chlne learnlng, pages
213 - 226, I 993.
[22]. H. Almuallim and T. G . Diottorich, Learning boolean
concepts in the presence of many irrelevant features,
Art/f/c/a/ /ntelllgence, pages 279 - 305, vol, 69, I 994.
[23]. M. Pazzani, C. Merz, K. Ali, and T. Hume, Reducing
misclassification costs. /nternatlonal Conference on
MachlneLeamlng, pages 217- 225, 1994,
[24]. M. Pazzani, An interatfve improvement approach for
the discretization of numeric attributes in bayesian
classifiers, Internat/onal Conference on Knowledge
D/scovery and DataMlnlng(KDD}, pages 228 - 233, 1 995.
[25]. F. Garbor and A. Djouadi, Bounds on the bayes
classification error based on pairwise risk functions~ /EEE
transactlons on PAM/, vo/. 10, pages 281- 288, 1988.
[26]. K. Tumor and J. Ghosh, Estimating the bayes error
rate through classifier combin- ing~ /nternat/ona/
Conference on Pattern recognltlon, pages 695-699,
1996
[27]. A. F. Kohn, L. G. Nakano, and M. O. Silva, A class
discrimability measure based on feature space
partitioning. Pattern recognltlon, pages 873 - 887, 1996 .
13
[28]. A. Mittal and L. F. Choong, Addressing the problems
of bayesian network classifi- cation of video using high
dimensional features, /EEE Transactlons on Knowledge
and DataEnglneerlng, pages 230 - 244, 2004.
[29]. C. C. Chang and C.-J. Lin, LIBSVM: introduction and
benchmarks, In Tech. Report, CS Deptt., NTU, Taiwan.
http..Ilwww csle.ntu.edu.twl~cjllnlllbsvml, 2004,