References
[1]. Joseph J. Carr and John M. Brown, Introduction to
Biomedical Equipment Technology, Pearson Education
Inc., 2001.
[2]. Cuiwei Li, Chongxum Zheng and Changfeng Tai,
Detection of ECG characteristic points using wavelets
transforms, IEEE Transactions on Biomedical Engineering,
vol. 42, no.1, pp. 21-28, 1995.
[3]. Senhadi L., Carrault G., Bellanger J. J., and
Passariello G., Comparing Wavelet Transforms for
Recognizing Cardiac Patterns, IEEE Engineering in
Medicine and Biology Magazine, Publication, vol. 14,
no. 2, pp. 167-1 73, Mar/Apr 1995.
[4]. Amara Graps, An Introduction to Wavelet, IEEE
Comp.Sc.andEngg., Vol.2, no. 2, 1995.
[5]. Govindan A., Deng G. and Power J., Electrogram
analysis during atrial fibrillation using wavelet and neural
networktechniques, Proc. SPIE 3169,pp.557-562, 1997.
[6]. Claesen, S. and Kitney, R.I., Estimation of the largest
Lyapunov exponent of an RR Interval and its use as an
indicator of decreased autonomic heart rate control,
IEEE Computers in Cardiology, pp. 131-136, 1994.
[7]. Walid El-Atabany. Nonlinear dynamical modeling of
ECG signals based on phase density matrix
representation, 2004.
[8]. Sun Y., Chan K. L., and Krishnan S. M.. Arrhythmia
detection and recognition in ECG signals using non-linear
techniques,Ann. Biomed. Eng, vol. 28, S3 7, 2000.
[9]. Silipo R. and Marchesi C., Artificial Neural Networks
for automatic ECG Analysis, IEEE Transactions on signal
processing, vol. 46, no. 5, pp.1 41 7-1 425, May 1 998.
[10]. Zong W., and Jiang D., Automated ECG rhythm
analysis using fuzzy reasoning, Computers in cardiology,
vol. 25, pp. 69-72, 1998.
[11]. Sugiura., T. Hirata.. H. Harada., Y. and Kazui, 1.,
Automatic discrimination of arrhythmia waveforms using
fuzzy logic, Proceedings of the 20th Annual International
Conference of the IEEE Engineering in Medicine and
Biologysociety, vol. 20, no. 1, 1998.
[12].Acharya U. R., Subbanna Bhat R, Iyengar S. S., Rao
A. and Duo 8., Classification of heart rate using artificial
neural network and fuzzy equivalence relation, Pattern
/?ecognit., vol. 36, pp. 61 -68, 2003.
[13]. Kannathal N., Puthusserypady S. K., Lim Choo Min,
Acharya, U.R. and Laxminarayan, 8., Cardiac State
Diagnosis using Adaptive Neuro—Fuzzy Technique,
Proceedings of the IEEE Engineering in Medicine and
Biology 27th Annual Conference Shanghai, China,
September 1 -4, 2005.
[14]. MIT-BIH arrhythmia database, 3rd ed, 1997, Harvard-
MIT Division of Health Science Technology, Biomedical
Health Centre, Cambridge, MA, USA.
[15]. Mietanowski M., Szelenberger, A. Trzebsk, Non
Linear Dynamics of the cardiovascular parameters in
sleep and sleep apnea, Journal of Physiology and
Pharmacology, 57, Suppl 1 1, 55-68. 2006.
[16]. Rezek, I. A., and Roberts, 8. J., Stochastic
complexity measures for physiological signal analysis,
IEEE Trans. Biomed. Eng., pp. 1 186-1 190. 1993.
[17]. Woo. M. A., Stevenson, W.G., Moser, D. K.,
Trelease.R.B., and Harper. R. H., Patterns of beat-to—beat
heart rate variability in advanced heart failure, Am. Heart
J., 123, pp. 704-710, 1992.
[18]. Kaman., F: W., Krum, H. , and Tonkin. A. M., Poincare
plot of heart rate variability allows quantitative display of
parasympathetic nervous activity, Clin. Sci., 91,
pp. 201-208. 1996.
[19]. Tulppo, M., Makikallio. T. H., Takala. T. E. S. and
Seppanen, K. H., Quantitative beat-to beat analysis of
heart rate dynamics during exercise, Am. J. Physiol., 71,
pp. H 244-252. 1996.
[20]. Rosensetien M., Colins J. J., and DE Luca, C. J., A
practical method for calculating largest Lyapunov
exponents from small data sets, Physica D, 65,
pp. 117-134, 1993.
[21]. Huikuri H.\l., MakikallioT. H., Peng C. K., Goldberger
A. L., Hintze U. and Moller M., Fractal correlation
properties of R-R interval dynamics and mortality in
patients with depressed left ventricular function after an
acute myocardial infarction, Circulation 101 47-53.
2000.
[22]. Maurice Sokolow, Malcolm B. Mcllroy, Melvin D.
Cheitlin, Clinical Cardiology, Prentice Hall lnt., 5th edition.
1990.
[23]. Acarya R., A. Kumar, R S. Bhat, C. M. Lim, S. S.
lyengar, N. Kannathal and S. M. Krishnan, Classification
of cardiac abnormalities using heart rate signals, Med.
Biol. Eng. Comput. 42, 288-293, 2004.