References
[1]. K. Gallagher and M. Sambridge, (1994). “Genetic
algorithms: a powerful tool for large-scale on linear
optimization problems”. Comput. Geosci., Vol. 20, No.
78, pp.1229–1236.
[2]. P. Frnti, J. Kivijrvi, T. Kaukoranta, and O.
Nevalainen,
(1997). “Genetic algorithms for large scale clustering
problems”. Comput.J, Vol. 40, pp. 547–554.
[3]. K. Sastry, D. E. Goldberg, and X. Llora, (2007).
“Towards Billionbit Optimization Via a Parallel Estimation of
distribution algorithm”. In GECCO '07: Proceedings of the
th 9 Annual Conference on Genetic and Evolutionary
Computation, pp. 577–584, New York, NY, USA, ACM.
[4]. Verma, A., Llorà, X., Goldberg, D. E., and
Campbell,
R. H., (2009). “Scaling Genetic Algorithms Using MapReduce”.
In: 9th International Conference on
Intelligent Systems Design and Applications, pp. 13-18.
IEEE, New York.
[5]. Chao Jin and Rajkumar Buyya, (2008). “MRPGA: An
Extension of Map Reduce for Parallelizing Genetic
Algorithm”. IEEE international Conference on Escience,
pp. 214-221.
[6]. Zhou C., (2010). “Fast Parallelization of
Differential
th Evolution Algorithm Using MapReduce”. In: 12 Annual
Conference on Genetic and Evolutionary Computation,
pp. 1113-1114, ACM, New York .
[7]. Filomena Ferrucci, (2015). "A Parallel Genetic
Algorithm Framework Based on Map Reduce.” ACM New
York, NY, USA, pp. 13-17.
[8]. Nivranshu Hans, Sana Mahajan, and SN Omkar,
(2015). “Big Data Clustering Using Genetic Algorithm On
Hadoop Mapreduce”. International Journal of Scientific
& Technology Research, Vol. 4, No. 4.
[9]. Doina Logofatu, and Daniel Stamate, (2014).
“Scalable Distributed Genetic Algorithm for Data Ordering
Problem with Inversion Using MapReduce”. AIAI 2014, pp.
325-334.
[10]. Filomena Ferrucci, M-Tahar Kechadi, (2013).
“A
Framework for Genetic Algorithms Based on Hadoop”.
arixiv, Cornell University USA, Vol. 30.
[11]. Iza'in Nurfateha Ruzan, and Suriayati Chuprat,
(2012). “A Hybrid Algorithm Using Genetic Algorithmhadoop
Mapreduce Optimization for Energy Efficiency in
Cloud Computing Platform”. International Journal of
Science and Research (IJSR).
[12]. Dino Keco, and Abdulhamit Subasi, (2012).
“Parallelization of Genetic Algorithm using Hadoop
Map/reduce”, Southeast Europe Journal of Soft
Computing, Vol.1, No. 2, pp. 56-59.
[13]. Atanas Radenski, (2012). “Distributed
Simulating
Annealing with Map Reduce”, European Conference on
Applications of Evolutionary Computation, pp. 466-476,
Spinger, Berlin.
[ 1 4 ] . Periasamy Vivekanandan, and Raju
Nedunchezhian, (2011). “Mining Data Stream with the
concept drifts using genetic algorithm”. Artificial
Intelligence Review, Vol. 36, No.3, pp. 163-178.
[15]. Di-Wei Huang and Jimmy Lin, (2010). “Scaling
population of a genetic algorithm for Job Shop scheduling Problem using
map reduce”. 2nd IEEE
International Conference on Cloud Computing
Technology and Science, pp. 780-785,USA.
[16]. Bioplanet.com. What is Bioinformatics? Retrieved
from http://www. bioplanet.com/what-is-bioinformatics/
[17]. Abhishek Verma and Roy H. Campbell, (2010).
“Scaling ECGA Model Building via Data-Intensive
Computing”. IEEE Congress on Evolutionary Computation
(CEC), Barcelona, Spain.
[18]. Youssef M. Essa, Gamal Attiya and Ayman El-Sayed,
(2013). “Mobile Agent based New Framework for
Improving Big Data Analysis”. 2013 International
Conference on Cloud Computing and Big Data.
[19]. Saurabh Arora and Inderveer Chana, (2014). “A
Survey of Clustering Techniques for Big Data Analysis”.
5th International Conference- Confluence The Next
Generation Information Technology Summit (Confluence).
[20]. Shankar Ganesh Manikandan and Siddarth Ravi,
(2014). “Big Data Analysis using Apache Hadoop”. 2014
International Conference on IT Convergence and
Security (ICITCS 2014), Beijing, China, pp. 345-348.
[21]. Xiafai Huang, Hui Zhou, Wei Wu, (2015).
“Hadoop
Job Scheduling Based on Mixed Ant-genetic Algorithm”.
Cyber-Enabled Distributed Computing and knowledge
Discovery, September 2015, pp. 226-229, IEEE.
[22]. Yildrim, Hallac, I.R. Aydin.G and Tatar Y, (2015).
“Running Genetic Algorithm on hadoop for solving high
dimensional optimization problems”. 9th
International
Conference (AICT), pp. 12-16, IEEE.
[23]. Pan and Ren-Hao, (2015). "Design of an NGS
MicroRNA predictor using multilayer hierarchal
MapReduce Framework”. Data Science and Advanced
Analytics (DSAA), 2015, IEEE International Conference,
pp. 1-8, France.
[24]. Milos Ivanovic, Visnja Simic, Boban Stojanovic, Ana
Kaplarevic and Branko Marovic, (2014). “Elastic Grid
Resources Provisioning with WoBinGo: A parallel
framework for genetic algorithm based optimization”.
Future Generation Computer Systems, Vol. 42, No. 2015,
pp. 44-54.
[25]. Chengyu Hu, Jing Zhao, Xuesong Yan, Deze Zeng
and Song Guo, (2015). “A MapReduce based Parallel
Niche Genetic Algorithm for Containment Source
Identification in Water Distributed Network”. Ad Hoc
Networks, pp. 1-11.
[26]. Mashan A. Alshammari and El-Sayed M.El-alfy,
(2015). “MapReduce Implementation for Minimum Reduct using Parallel
Genetic Algorithm”. 6th International
Conference on Information and Communication System
, IEEE.
[27]. Andrea L. Halweg-Edward, William C Grau, James D
Winkler, Andrew D. Garast and Rayan T. Gill, (2015). “The
emergence commodity-scale genetic manipulation”.
Chemical Biology, pp. 150-155.
[28]. David Camacho, (2015). “Bio-inspired
Clustering:
Basic Features and Future Trends in the Era of Big Data”.
2nd international Conference on Cybernetics (CYBCONF
2015), IEEE, Poland.
[29]. Yue-Jiao Gong, Wei-Neng chen, Zhi-Hui Zhan, Jun
Zhang, Yun Li and Qingfu Zhang, (2015). “Distributed
evolutionary Algorithm and their models: A Survey of
State-of-the-art”. Applied Soft Computing, Vol. 34, pp.
286-300.
[30]. D.L. Gonzalez, and F.F. de Vega, (2007). “On
the
Intrinsic Fault-Tolerance Nature of Parallel Genetic
Programming”. In : EUROMICRO International
Conference on Parallel, Distributed and Network-Based
Processing, pp. 450–458.
[31]. F. Herrera, and M. Lozano, (2000). “Gradual
Distributed Real-Coded Genetic Algorithms”. IEEE Trans.
Evol. Comput. Vol. 4, No. 1, pp. 43–63.
[32]. N. Melab, and E.-G. Talbi, (2010). “GPU-based
Island Model for Evolutionary Algorithms”. In: Proceedings of the
12th Annual Conference on Genetic and
Evolutionary Computation (GECCO), pp. 1089–1096.
[33]. J.J. Merelo-Guervos, A. Mora, J.A. Cruz, A.I.
Esparcia-Alcazar, C. Cotta, (2012). “Scaling in Distributed
Evolutionary Algorithms with Persistent Population”. In: IEEE
Congress on Evolutionary Computation (CEC), pp. 1–8.
[34]. L.d.P. Veronese, and R.A. Krohling, (2010).
“Differential Evolution Algorithm on the GPU with C-CUDA”.
In: IEEE Congress on Evolutionary Computation (CEC), pp.
1–7.
[35]. S.M. Said, and M. Nakamura, (2012). “Parallel
enhanced hybrid evolutionary algorithm for continuous
function optimization”. In: International Conference on
P2P, Parallel, Grid, Cloud and Internet Computing, pp.
125–131.
[36]. B. Wu, G. Wu, and M. Yang, (2012). “A
MapReduce
Based Ant Colony Optimization Approach to
Combinatorial Optimization Problems”. In: International
Conference on Natural Computation (ICNC), pp.
728–732.
[37]. B. Yu, Z. Yang, X. Sun, B. Yao, Q. Zeng, and E.
Jeppesen, (2011). “Parallel Genetic Algorithm in Bus
Route Headway Optimization”. Appl.Soft Comput. Vol.
11, No. 8, pp. 5081–5091.
[38]. W. Yu,W. Zhang, (2006). “Study on function
Optimization Based on Master-Slave Structure Genetic
Algorithm”. In: International Conference on Signal
Processing, Vol. 3, pp. 1–4.
[39]. J. Zhao, W. Wang, W. Pedrycz, and X. Tian, (2012).
“Online Parameter Optimization-based Prediction for
Converter Gas System by Parallel Strategies”. IEEE Trans.
Control Syst. Technol. Vol. 20, No. 3, pp. 835–845.
[40]. C. Zhou, (2010). “Fast parallelization of
differential
Evolution Algorithm using MapReduce”. In: Proceedings
th of the 12 Annual Conference on Genetic and
Evolutionary Computation (GECCO), pp. 1113–1114.
[41]. W. Zhao, S. Alam, and H.A. Abbass, (2014).
“MOCCA-II: A Multi-objective Co-operative Evolutionary
Algorithm”. Appl. Soft Comput. Vol. 23, pp. 407–416.
[42]. W. Zhu, (2011). “Nonlinear Optimization with
a Massively Parallel Evolution Strategy Pattern Search
Algorithm on Graphics Hardware”. Appl. Soft Comput. Vol.
11, No. 2, pp. 770–1781.
[43]. X. Llora, A. Verma, R.H. Campbell, and D.E.
Goldberg, (2010). “When Huge is Routine: Scaling
Genetic Algorithms and Estimation of Distribution
Algorithms Via Data Intensive Computing”. In: Parallel
and Distributed Computational Intelligence, Springer,
Berlin, Heidelberg, pp. 11–41.
[44]. J.J. Durillo, and A.J. Nebro, (2011).
“JMetal: a Java
Framework for Multi-objective Optimization”. Adv. Eng.
Softw. Vol. 42, No. 10, pp. 760–771.
[45]. J. Ekanayake, S. Pallickara, and G. Fox, (2008).
“MapReduce for Data Intensive Scientific Analyses”.
eScience, 2008. eScience '08. IEEE Fourth International
Conference, pp. 277–284.
[46]. T. Xia, (2008). “Large-scale sms messages
mining
based on map-reduce”. Computational Intelligence
and Design, 2008, ISCID '08 International Symposium, Vol.
1, pp. 7–12.
[47]. H.-c. Yang, A. Dasdan, R.-L. Hsiao, and D. S.
Parker,
(2007). “Map-reduce-merge: simplified relational data
processing on large clusters”. In SIGMOD '07:
Proceedings of the 2007 ACM SIGMOD International
Conference on Management of Data, pp. 1029–1040,
New York, NY, USA, ACM.
[48]. Fei Teng, and Doga Tuncay, "Genetic Algorithm
using MapReduce runtimes". Proposal Document on
salsahpc.indiana.edu.
[49]. Sukhmani Goraya, and Vikas Khullar, (2015).
“Map-
Reduce Synchronized and Comparative Queue
Capacity Scheduler in Hadoop for Extensive Data”. IOSR
Journals (IOSR Journal of Computer Engineering), pp. 64-
75.
[50]. Vikas Khullar and Sukhmani Goraya, (2015).
“Enhancing Dynamic Capacity Scheduler for Data
Intensive Jobs”. International Journal of Computer
Applications, Vol. 121, No. 12, pp. 21-24.