References
[1]. E. Ott, C. Grebogi, and J.A.Yorke, (1990). “Controlling Chaos”. Physical Review Letters, Vol. 64, pp.1196-1204.
[2]. E. Scholl and H.G. Schuster, (1999). Handbook of Chaos Control. Wiley: Weinheim.
[3]. M.I. Rabinovich and H.D.I. Abarbanel, (1998). “The Role of Chaos in Neural Systems”. Neuro Science, Vol.87, pp.5-14.
[4]. S. Steingrube, M. Timme, F.Worg and P. Manoonpong, (2010). “Self-organized Adaptation of a Simple Neural Circuit
Enables Complex Robot Behavior”. Nature of Physics, Vol.6, pp.224-230.
[5]. J. Guckenheimer and P. Holmes, (1983). Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields.
Springer-Verlag: New York.
[6]. M. Vittot, (2004). “Perturbation Theory and Control in Classical or Quantum Mechanics by an Inversion Formula”. Journal
of Physics A: Mathematical and General, Vol.37, pp.6337-6357.
[7]. A. Khan and M. Shahzad, (2008). “Control of Chaos in Hamiltonian System of Mimas-Tethys System”. The
Astronomical Journal, Vol.136, pp.2201-2203.
[8]. M. Islam B. Islam and N. Islam, (2014). “Chaos Control in Shimizu Morioka System by Lie Algebraic Exact Linearization”.
International Journal on Dynamics Control, Vol.2, pp.386-394.
[9]. B.R. Andrievskii and A.L. Fradkov, (2003). “Control of Chaos: Methods and Applications”. Automatic Remote Control,
Vol.64, pp.673-713.
[10]. L.Q. Chen and Y.Z. Liu, (1999). “A Modified Exact Linearization Control for Chaotic Oscillators”. Nonlinear
Dynamics, Vol.20, pp.309-317.
[11]. C. Liqun and L. Yanzhu, (1998). “Control of Lorenz Chaos by the Exact Linearization”. Applied Mathematics and
Mechanics, Vol.19, pp.67-73.
[12]. N. Islam, H.P. Mazumdar and A. Das, (2009). “On the Stability and Control of Shimuzu Morioka System of
Differential Equations”. Differential Geometry Dynamical Systems, Vol.11, pp.135-143
[13]. N. Islam, B. Islam and H.P. Mazumdar, (2011). “Generalised Chaos Synchronization of Unidirectionally Coupled Shimizu
Morioka Dynamical System”. Differential Geometry Dynamical Systems, Vol.13, pp.114-119.
[14]. M. Islam,B. Islam and N. Islam, (2013). “Rate Estimation of Identical Synchronization by Designing Controllers”. Journal
of Mathematics, doi:10.1155/2013/590462.
[15]. A. Mondal, N. Islam and S. Sen, (2015). “Control of Chaos in Sprott System by State Space Exact Linearization Method”.
International Journal on Mathematics and Computer Science, Vol.1, pp.11-18.
[16]. G.R. Tsagas and H.P. Mazumdar, (2000). “On the Control of a Dynamical System by a Linearization Method via Lie
Algebra”. Review of Calcutta Mathematical Society, Vol.8, pp.25-32.
[17]. J. Alvarez-Gallegos, (1994). “Non-linear Regulation of a Lorenz System by Feedback Linearization Techniques”.
Dynamic Control, Vol.4, pp.272-289.
[18]. T. Shinbrot, C. Grebogi, E. Ott and J.A. Yorkee, (1993). “Using Small Perturbation to Control Chaos”. Nature, Vol.363,
pp.411-474.
[19]. M.R. Jafari, S. Effati and H. Salarabedi, (2012). “Chaos Control and Global Stabilization of HIV Infection of CD T-cells 4
System”. International Journal of Nonlinear Science, Vol.13, pp.446-453.