References
[1]. C.T. Lin, and C.F. Juang, (2001). “An adaptive neural
fuzzy filter and its applications”. IEEE Transactions on
Systems, MAN, and Cybernetics, Vol. 27, No. 4, pp.1103-
1110.
[2]. Jenisha. J. Hannah and Suja Priyadharsini, (2012).
“Patient Adaptive ECG Beat Classifier using Repetition
Detection Approach Enhanced by Neural Networks”.
International Conference on Computing and Research
and Control Engineering (ICCCE 2012), ISBN:978-1-4675-
2248-9.
[3]. K .O. Gupta and P. N. Chatur, (2012). “ECG Signal
Analysis and Classification using Data Mining and Artificial
Neural Networks”. International Journal of Emerging
Technology Advanced Engineering, ISSN:2250-2459, Vol.
2, No. 1, pp. 56-60.
[4]. J. T. Catalano. Guide to ECG Analysis. Lippincott, 2
Edition.
[5]. Bucolo M., Grazia F. D., Sapuppo F., Nikolic D.,
Vuksanovic B., (2009). “Multidimensional Analysis toward
the Identification of ECG Nonlinear Dynamics”. PHYSCON
2009, Catania, Italy.
[6]. Y.C. Yeha, and W. J. Wang, (2008). “QRS complexes
detection for ECG signals: The Difference Operation
Method (DOM)”. Computer Methods and Programs in
Biomedicine, Vol. 9, pp. 245–254.
[7]. A. B. Ramli, and P. A. Ahmad, (2003). “Correlation
th analysis for abnormal ECG signal features extraction”. 4
National Conference on Telecommunication
Technology, 2003. NCTT 2003 Proceedings, pp. 232- 237.
[8]. P. Tadejko, and W. Rakowski, (2007). “Mathematical
Morphology Based ECG Feature Extraction for the Purpose
th of Heartbeat Classification”. 6 International Conference
on Computer Information Systems and Industrial Management Applications, CISIM '07, pp. 322-327.
[9]. Xiaomin Xu, and Ying Liu, (2004). “ECG QRS Complex
Detection Using Slope Vector Waveform (SVW) Algorithm”.
th Proceedings of the 26 Annual International Conference
of the IEEE EMBS, pp. 3597- 3600.
[10]. Manpreet Kaur and A.S. Arora, (2010).
“Unsupervised Analysis of Arrhythmias using K-means
Clustering”. (IJCSIT) International Journal of Computer
Science and Information Technologies, Vol. 1, No. 5, pp.
417- 419.
[11]. S. Mitra, and B. B. Chaudhuri, M. Mitra, (2006). “A
rough set based inference engine for ECG classification”.
IEEE Trans. Instrum. Meas., Vol. 55, No. 6, pp. 2198–2206.
[12]. B. Castro, D. Kogan, and A. B. Geva, (2000). “ECG
st feature extraction using optimal mother wavelet”. The 21
IEEE Convention of the Electrical and Electronic Engineers
in Israel, pp. 346-350.
[13]. T. M. Nazmy, H. El-Messiry and B. Albokhity, (2009).
“Adaptive Neuro-Fuzzy Inference System for Classification
of Ecg Signals”. Journal of Theoretical and Applied
Information Technology.
[14]. Alan Jovic, and Nikola Bogunovic, (2007). “Feature
Extraction for ECG Time-Series Mining based on Chaos
th Theory”. Proceedings of 29 International Conference on
Information Technology Interfaces.
[15]. Raushan Ara Dilruba, Nipa Chowdhury, Farhana
Ferdousi Liza, Karmakar, K.C., (2006). “Data pattern
recognition using neural network with back propagation
training”. pp 451-455.
[16]. Philip de Chazal, Maria O'Dwyer and Richard B.
Reilly, (2004). “Automatic Classification of Heartbeats
Using ECG Morphology and Heartbeat Interval Features”.
IEEE Transactions on Biomedical Engineering, Vol. 51, pp.
1196 - 1206.
[17]. Yuksel Ozbay and Bekir Karlik, (2001). “A Recognition
of ECG Arrhythmias Using Artificial Neural Networks”.
rd Proceedings of the 23 Annual EMBS International
conference, Turkey, pp. 1680-1683.
[18]. K. Zhu, P. D. Noakes and A.D.P. Green, (1991). “ECG
Monitoring with Artificial Neural Networks”. Proc. Second International conference on Artificial Neural Networks,
Colchester, UK, pp. 205 - 209.
[19]. El-Khafif S. H. and El-Brawany M. A., (2013). “Artificial
Neural Network-Based Automated ECG Signal Classifier”.
ISRN Biomedical Engineering.
[20]. Mr. Deshmukh Rohan, Dr. A. J. Patil, (2012). “Layered
Approach for ECG betas Classification utilizing Neural
Network functions”. International Journal of Engineering
Research and Applications (IJREA), ISSN:2248-9622., Vol.
2, No. 6, pp.1495-1500.
[21] . S. Osowaki, and T.H. Linh, (2001). “ECG beat
recognition using fuzzy hybrid neural network”. IEEE Trans.
Biomed. Eng. Vol. 48, No. 11, pp. 1265-1271.
[22]. Hosseini H.G., Luob D. and Reynolds K. J, (2006).
“The comparison of different feed forward neural network
architectures for ECG signal diagnosis”. Medical
Engineering & Physics. Vol. 28, pp. 372–378.
[23]. F. De Chazal and R. B. Reilly, (2006). “A patient
adapting heart beat classifier using ECG morphology and
heartbeat interval features”. IEEE Trans. Biomed. Eng., Vol.
53, No. 12, pp. 2535–2543.
[24]. S.Y. Foo, G. Harvey, and A. Meyer-Baese, (2002).
“Neural network based ECG pattern recognition”. Eng.
Appl. Artificial Intelligence, Vol.15, pp. 353-360.
[25]. V. Pilla, and H.S. Lopes, (1999). “Evolutionary training
of a neuro-fuzzy network for detection of a P wave of the
ECG”. Proceeding of the Third International Conference
on Computational Intelligence and Multimedia
Applications, New Delhi, India, pp.102-106.
[26]. M. Engin, and S. Demirag, (2003). “Fuzzy-hybrid
neural network based ECG beat recognition using three
different types of feature sets”. Cardiovasc. Eng. Int. J. Vol.
3, No. 2, pp. 71-80.
[27]. Ranganathan G., Rangarajan R. and Bindhu V.,
(2011). “Evaluation of ECG Signals for Mental Stress
Assessment using Fuzzy Technique”. International Journal
of Soft Computing and Engineering (IJSCE), Vol.1, No. 4,
pp. 195-201.
[28]. Manimegalai P., Bharathi P. and Thanushkodi K.,
(2012). “Real Time Implementation of Analysis of ECG
Characteristic Points Using Discrete Wavelets”. Global
Journal of Researches in Engineering-Electrical and
Electronics Engineering. Vol.12, No. 1.
[29]. Glayol Nazari Golpayegani, and Amir Homayoun
Jafari, (2009). “A novel approach in ECG beat recognition
using adaptive neural fuzzy filter”. J. Biomedical Science
and Engineering, Vol. 2, pp. 80-85.
[30]. Owis M. I., Abou-Zied A. H., Youssef A. M. and Kadah
Y. M.,(2002). “Study of Features Based on Nonlinear
Dynamical Modeling in ECG Arrhythmia Detection and
Classification”. IEEE Transactions on Biomedical
Engineering, Vol. 49, No. 7, pp. 733-736.
[31]. M. Bahoura, M. Hassani, and M. Hubin, (1997). “DSP
implementation of wavelet transform for real time ECG
wave forms detection and heart rate analysis”. Comput.
Methods Programs Biomed; Vol. 52, No. 1, pp.35–44.
[32]. Y. H. Hu, W. J. Tompkins, J. L. Urrusti and V. X. Afonso,
(1993). “Applications of artificial neural networks for ECG
signal detection and classification”. J.Electrocardiology,
Vol. 26, pp. 66-73.
[33]. PhysioNet, (2015). MIT_BIH Arrythmia Database.
Retrieved from http://www.physionet.org/physiobank
/database/ mitdb/
[34]. C. Li, C. Zheng, (1993). Proc. Annual Int. Conf. IEE
Eng. in Med. & Biol. Soc., San Diego, California.
[35]. Mathworks. Neural Network Toolbox. Retrieved from
http://www. mathworks.com
[36]. L. Khadra, A. Fraiwan and W. Shahab, (2002).
“Neural-wavelet analysis of cardiac arrhythmias”.
Proceedings of the WSEAS International Conference on
Neural Network and Applications (NNA '02), Interlaken,
Switzerland.
[37]. S. Pachekhiya and A. K. Wadhwani, “Disease
Diagnosis Of Heart Muscles Using Error Back propagation
Neural Network”. International Journal of Engineering
Science and Technology.