References
[1]. Ameer Mohammed Baqer & Hind Rostom
Mohammed,(2013). “Color Based Segmentation Iris
image for Secure Distributed Systems”. International
Journal of Scientific and Engineering Research, Vol. 4,
issue 12.
[2]. Bruyas, A & Papanikolopoulos, N. (2013). “A
Genetic
Algorithm for the construction of optimized covariance
descriptors”. IEEE Conference on Control and
automation publications, pp. 1583-1588.
[3]. Christian Horr, Elisabeth Lindinger & Guido
Brunnett,
(2014). “Machine Learning Based Topology Development
in Archaeology”. ACM Journal on Computing and
Cultural Heritage, Vol. 7, No. 1.
[4]. Dufournaud, Y, Schmid, C & Horaud, R. (2000).
“Matching images with different resolutions”. Proceedings
of the Conference on Computer Vision and Pattern
Recognition, pp. 612–618.
[5]. Fezza, S, Larabi, M & Faraoun, K. (2014).
“Feature
Based Color Correction ofMultiview Video for Coding and
Rendering Enhancement”. IEEE Transactions on Circuits and Video
Technology, pp. 1486 – 1498.
[6]. Harris, C. and Make Stephens, (1988). “A
combined
corner and edge detector ”. Proceedings of 4 Alvey
VisionConference, pp. 147-152.
[7]. Herbert Bay, Tuytelaars, T & Van Gool, L. (2008).
“Speeded-up robust features (SURF)”. International
Journal on Computer Vision and Image Understanding, Vol. 110,No. 3, pp.
346-359.
[8]. Herbert Bay, Tuytelaars, T & Van Gool, L.(2006).
“SURF:
Speeded up robust features”. Proceedings of the
European Conference on Computer Vision.pp. 404-417.
[9]. Heymann, S, Mueller, K, Smolic, A, Froelich, B &
Wiegand, T. (2007). “SIFT implementation and
optimization for general-purpose GPU”. Proceedings of
15 International Conference on Central European
Computer Graphics and Visual Computer Vision, pp. 317-
322.
[10]. Huang, F, Huang, S, Ker, J & Chen, Y. (2012).
“High
performance SIFT hardware accelerator for real-time
image feature extraction”. IEEE Transaction on Circuits
Systemand Video Technology, Vol. 22, No. 3, pp. 340-351.
[11]. Jianhui Wang, Sheng Zhong, Luxin Yan & Zhiguo
Cao. (2014). “An Embedded Systemon Chip Architecture
for Real time Visual Detection and Matching”. IEEE
Transactions on Circuits and Systems for Video
Technology, Vol. 24, No. 3.
[12]. John C., Russ, (2011). The Image Processing
Handbook. CRC Press Taylor and Francis Group, Sixth
Edition.
[13]. Josef Sivic & Zisserman, A. (2003).
“Video Google: A
text retrieval approach to object Matching in videos”. Proceedings
of the International Conference on
Computer Vision, pp. 1470-1478.
[14]. Ke, Y & Sukthankar, R., (2004). “A more
distinctive
representation for local image descriptors”. Proceedings
of the Conference on Computer Vision and Pattern
Recognition, pp. 511–517.
[15]. Kaihua Zhang, Huihui & LeiZhang, (2010).
“Active
contours driven by local image fitting energy”. Elsevier,
Pattern Recognition, Vol.43, pp.1196-1206.
[16]. Lowe, D. (2004). “Distinctive image features
from
scale-invariant key points”. International Journal of
Computer Vision, Vol. 2, No. 60, pp. 91-110.
[17]. Matthew McCartney, Zein Sabatto, S & Malkani,
M.
(2009). “Image registration for sequence of visual images
captured by UAV”. Proceedings of IEEE Conference on
Computer Intelligence and Multimedia Signal Vision
Processing, pp. 91-97.
[18]. Michael Calonder, Lepetit, L, Fua, P, Konolige, K,
Bowman, J & Mihelich. (2009). “Compact signatures for
high-speed interest point description and matching”. Proceedings of
12 IEEE International Conference on
Computer Vision, pp. 357-364.
[19]. Michael Calonder, Lepetit, V, Oezuysal, M,
Trzcinski,
T, Strecha, C & Fua, P. (2012). “Computing a local binary
descriptor very fast” IEEE Transactions on Pattern Analysis
andMachine Intelligence, Vol. 34, No. 7, pp. 1281-1298.
[20]. Mikolajczyk, K & Schmid, C. (2005). “A
performance
evaluation of local descriptors”. IEEE Transactions on
Pattern Analysis andMachine Intelligence, Vol. 27, No. 10,
pp. 1615-1630.
[21]. Motilal Agrawal, Konolige, K, & Blas, M.
(2008). “Censure: Center surround extremas for real time feature
detection and matching”. Proceedings of European
Conference on Computer Vision, Vol. 53, pp. 102-115.
[22]. Nico Cornelis & Van Gool, L. (2008).
“Fast scale
invar iant feature detect ion and matching on
programmable graphics hardware”. Proceedings of IEEE
Computer Society Conference on Computer Vision
Pattern Recognition Workshops, Vol.1,No.3, pp.1013-
1020.
[23]. Rafael C., Gonzalez & Richard E., Woods.
(2003). Digital Image Processing. Prentice hall, 2nd edition.
[24]. Rosten, E & Drummond, T. (2005). “Fusing
points and
lines for high performance tracking”. Proceedings of the
International Conference on Computer Vision, pp.1508-
1511.
[25]. Rosten, E, & Drummond, T. (2006).
“Machine learning
for high-speed corner detection”. Proceedings of the
European Conference on Computer Vision, pp. 430-443.
[26]. Schaeferling, M, & Kiefer, G. (2011).
“Object
recognition on a chip: A complete SURF based system on
a single FPGA”. Proceedings of International Conference
on FPGAs Reconfiguration, pp. 49- 54.
[27]. Sebe, N, Gevers, T, Van de Weijer, J, &
Dijkstra, S.
(2006). “Corner detectors for affine invariant salient
regions: Is color important”. Proceedings of International
Conference on Image and Video Retrieval, pp. 61–71.
[28]. Sharma, A, Kanungo, A, Singla, C. (2014).
“Smart
traffic lights switching and traffic density calculation using
video processing”. IEEE Conference on Recent Advances
in Engineering and Computational Sciences (RAECS), pp.1-6.
[29]. Sharma, K & Koyal, A. (2014) .
“Classification based
survey of image registration methods”. IEEE Conference
on Computing, Communications and Technologies
(ICCCNT) , pp.1-7.
[30]. Shirisha, G, Pushpalatha & Rajani, A. (2014).
“Iris
Recognition Based on Quality Assurance of Texture
Properties”.International Journal of Communication
Engineering Applications (IJCEA), Vol. 05, No. I088.
[31]. Sheng Zhong, Wang, J, Yan, Kang, L & Cao, Z.
(2013). “A real time embedded architecture for SIFT”. Journal
of System Architecture, Vol. 59, No. 1, pp. 16-29.
[32]. Simon Winder, & Brown, M. (2009).
“Picking the best
DAISY”. Proceedings of IEEE Conference on Computer
Vision Pattern Recognition, Vol.1-4, pp.178-185.
[33]. Sinha, S, Michael Frahm, J, Pollefeys, M, &
Genc, Y.
(2006). “GPU-based video feature tracking and
matching”. Proceedings of Workshop Edge Computer
Using New Commodity Architecture, Vol. 278, pp. 695-
699.
[34]. Svab, J, Krajnik, T, Faigl, J, & L. Preucil,
(2009). “FPGA
based speeded up robust features”. Proceedings of IEEE
International Conference Technology Practical Robot
Applications, pp. 35-41.
[35]. Thomas Blaschke, Geoffrey Hay,Maggi Kelly, Stefan
Lang & Peter Hofmann, (2014). “Geographic Object
Based Image Analysis towards a new paradigm”. ISPRS
Journal of Photogrammetry and Remote Sensing, Vol.87,
pp.180-191.
[36]. Trujillo, L & Olague, G. (2006).
“Synthesis of interest
point detectors through genetic programming”. Genetic
and Evolutionary Computation, pp. 887-894.
[37]. Tuytelaars, T & Schmid, C. (2007).
“Vector quantizing
feature space with a regular lattice”. Proceedings of the
International Conference on Computer Vision.
[38]. Vanderlei Bonato Marques & Constantinides, G.
(2008). “A parallel hardware architecture for scale and
rotation invariant feature detection”. IEEE Transactions on
Circuits System Video Technology, Vol. 18, No. 12, pp.
1703-1712.
[39]. Wang, Q & Uya, S. (2007). “Real-time
image
matching based on multiple view kernel projection”. Proceedings of
IEEE Conference on Computer Vision
Pattern Recognition, Vol. 1–8, pp. 3286- 3293.
[40]. Xiao Yuan Jing & Jing Yu Yang. (2010) .
“Supervised
and Unsupervised Parallel Subspace Learning for Large
Scale Image Recognition”. IEEE Transactions on Circuits
and Video Technology, Vol.12, No. 10, pp. 1497 - 1511.
[41]. Yao, L, Feng & Feng, W. (2009). “An
architecture of
optimized SIFT feature detection for an FPGA
implementation of an image matcher ”. Proceedings
International Conference on Field Programmable
Technology, pp. 30-37.
[42]. Sabarinathan, E. (2015). “An Embedded
System-on-
Chip Architecture for Real Time Visual Detection and
Matching”. Proceedings on National Conference on
Futuristic Computing and Communication Technologies.
[43]. Sabarinathan, E. (2015). “FPGA Implementation
of
Real time Visual detection and Matching”. Proceedings
on International Conference on Recent Trends in
Information and Communication, pp.101-107.
[44]. Sabarinathan, E., Manoj, E. (2015). “FPGA
Based
Parallel Hardware Architecture For Real Time Object
Classification”. Proceedings on National Conference on
Innovative & Emerging Trends in Engineering and Technology.
[45]. Sabarinathan, E, Senthilkumar, M. (2015). “An
Embedded System-on-Chip Architecture for Real Time
Vi sual Detect ion and Matching” . Proceedings
International Journal of Applied Engineering Research, Vol.10, No.
52.
[46]. Sabarinathan, E., Manoj, E . (2014). “FPGA
Based
Parallel Hardware Architecture For Real Time Object
Classification”, i -manager ’s Journal on Pattern
Recognition, Vol.1, No.4.