References
[1]. Ling-fei, Cao., Wang Ming-pu, Zhou, Li., Ben, Xu., & Yu-
Chang, Su., (2002). “Thermal cycling effect in Cu-11.9Al-
2.5Mn shape memory alloy with high Ms temperature”.
Transactions Nonferrous Society of China, Vol.12 (4), pp.
716-719.
[2]. Wang, Qingzhou., Han, Fusheng., Cui, Chunxiang.,
Bu, Shaojing., & Bai, Ling., (2007). “Effect of aging on the
reverse martensitic phase transformation behaviours of Cu- Al-Mn shape memory alloys”. Materials Letters, Vol. 61, pp
5185–5187.
[3]. Dasgupta, Rupa., Jain, Ashish Kumar., Kumar, Pravir.,
Hussain, Shahadat., & Pandey, Abhishek., (2015). “Role of
alloying additions on the properties of Cu-Al-Mn shape
memory alloys”. Journal of Alloys and Compounds
(JALCOM), Vol. 620, pp. 60–66.
[4]. Dagdelen, F., Gokhan, T., Aydogdu, A., Aydogdu, Y.,
Adigu, O., (2003). “Effects of thermal treatments on
transformation behaviour in shape memory Cu-Al-Ni
alloys”. Materials Letters, Vol. 57, pp. 1079–1085
[5]. Xiaomin, Cheng., Feng, Huang., Na, Li., & Xingwen,
Wu., (2008). “Microstructure and Shape Memory Effect of
Cu-26.1Zn-4.8Al Alloy”. Journal of Wuhan University of
Technology-Mater. Sci. Ed, Vol. 8, pp. 717-719.
[6]. Sotou, Y., Omori, T., Kainuma, R., & Ishida, K., (2008).
“Ductile Cu-Al-Mn based shape memory alloys: general
properties and applications”. Materials Science and
Technology, Vol. 24 (8), pp. 896-901.
[7]. Chen, J., Lia, Z., & Zhao, Y.Y., (2009). “A high-workingtemperature
CuAlMnZr shape memory alloy”. Journal of
Alloys and Compounds, Vol. 480, pp. 481–484.
[8]. Ma, J., Karaman, I., & Noebe, R. D., (2010). “High
temperature shape memory alloys”. International
Materials Reviews, Vol. 55 (5), pp. 257-264.
[9]. Dasgupta, Rupa., Jain, Ashish Kumar., Kumar, Pravir.,
Hussein, Shahadat., & Pandey, Abhishek., (2014). “Effect
of alloying constituents on the martensitic phase formation
in some Cu-based SMAs”. Journal of Materials Research
and Technology, Vol. 3, pp. 264-273.
[10]. Kayali, N., Ozgen, S., & Adigiizel, O., (1997). “The
Influence of Ageing on Martensite Morphology in Shape
Memory CuZnAl Alloys”. J. Phys. IV France 7, Colloque C5,
Supplément au Journal de Physique III de, Vol.11, pp. C5-
317-C5-322.
[11]. Sathish, S., Mallik, U. S., & Raju, T. N., (2014).
“Microstructure and Shape Memory Effect of Cu-Zn-Ni
Shape Memory Alloys”. Journal of Minerals and Materials
Characterization and Engineering, Vol. 2, pp.71-77
[12]. Safaa, N. Sauda., Hamzaha, E., Abubakara, T., &
Hosseinian, R., (2013). “A Review on Influence of Alloying Elements on the Microstructure and Mechanical Properties
of Cu-Al-Ni Shape Memory Alloys”. Jurnal Teknologi, Vol. 64
(1), pp. 51–56
[13]. Stice, J.D., & Wayman, C.M.., (1982). “Observations
of aging effects in a Cu-Sn shape memory alloy”. Metall.
Trans. A, Vol. 13(10), pp. 1687-1693.
[14]. S.K. Vajpai., Dube, R.K., & Sangal, S., (2011).
“Processing and characterization of Cu-Al-Ni shape
memory alloy strips prepared from prealloyed powder by
hot densification rolling of powder performs”. Metall.
Mater. Trans., Vol. 42A, pp. 3178-3185.
[15]. Otsuka, K., & Ren, X., (1999). “Martensitic
transformations in Nonferrous shape memory alloys”.
Materials Science and Engineering A, Vol. 273 – 275, pp.
89 – 105.
[16]. Dasgupta, Rupa., (2014). “A Look into Cu-based
SMAs: Present Scenario and Future Prospects”. Journal of
Materials Research (JMR), Vol. 29 (16), pp. 1681-1698.
[17]. Ma, Y.Q., Jiang, C.B., & Xu, H.B., (2003). “Martensitic
Transformation and Thermal Stability in Cu-Al-Co and Cu-Al-
Zr Alloys”. Acta Metall Sinica, Vol. 16 (6), pp. 445-448.