The authors report a novel detection technique for two types of common heavy metal contaminants in water, copper sulphate and ferric chloride, by analyzing the transmittance measurement of a supercontinuum laser source on the samples. In the past, the detection of heavy metal contaminants in water was done conventionally by using atomic spectroscopy method. This method requires a series of steps such as atomization of water sample by burning the sample with flame and then shines a specific wavelength of light on that cloud of atoms in order to determine the presence of that particular heavy metal contaminant. The authors aim to demonstrate a more convenient method, which is by shining a broadband supercontinuum light source directly on the water sample and performing transmittance measurement. Instead of shining a light source with certain wavelength, supercontinuum laser source allows emission of light ranging from 600 nm to 1600 nm wavelength simultaneously. By measuring the amount of light transmitted through the water sample, the concentration of heavy metal contaminants can be determined. The laser source, which comprises of a Master Oscillator Power Amplifier (MOPA) paired with a 15 meters long Photonic Crystal Fiber (PCF) has the ability of producing broad bandwidth light source with an average power of 1W. The experimental results were further analyzed using Analysis Of Variance (ANOVA) in which, the authors have identified that wavelength, concentration of heavy metal contaminants and the types of contaminants that will affect the transmittance of the supercontinuum laser source.