A Review on Model Predictive Control Technology and Future Advancements

Prateek Kumar Pathak*, L. B. Prasad**
Periodicity:November - January'2016
DOI : https://doi.org/10.26634/jic.4.1.3778

Abstract

The Model Predictive Control (MPC) technique determines the receding horizon control solution by minimizing the cost function, while satisfying the constraints. This paper presents a review on the MPC technology and its future advancements. The control strategy, used to find the solution of an optimal control problem within the constraint limits is described in this paper. The various factors and the models influencing the MPC solution for the optimal control problems are also explained. A vision of the next generation of MPC technology with more emphasis on potential business and research opportunities are presented in this paper.

Keywords

Model Predictive Control, Receding Horizon, Manipulated Variables, Constraints.

How to Cite this Article?

Prateek Kumar Pathak, and Lal Bahadur Prasad (2016). A Review on Model Predictive Control Technology and Future Advancements. i-manager’s Journal on Instrumentation and Control Engineering, 4(1), 40-46. https://doi.org/10.26634/jic.4.1.3778

References

[1]. Richalet, J., Rault, A., Testud, J. L., & Papon, J., (1978). “Model Predictive Heuristic Control: Applications to Industrial Processes”. Automatica, Vol.14, pp. 413–428.
[2]. L. Wang, (2002). “A Tutorial on Model Predictive Control: Using a Linear Velocity-form Model”. Department of Electrical and Computer Engineering, University of Newcastle.
[3]. Seron, Maria M., De Dona, Jose A., & Goodwin, Graham C., (2000). “Global Analytical Model Predictive th Control with Input Constraints”. in Proceedings of the 39 IEEE Conference on Decision and Control, Sydney, Australia, pp.154–159.
[4]. Wongpiromsarn, Tichakorn, Topcu, Ufuk, & Murray, Richard M., (2012). “Receding Horizon Temporal Logic Planning”. IEEE Transactions on Automatic Control, Vol.57(11), pp. 2817–2830.
[5]. C.E. Garcia and M. Morari., (1982). “Internal Model Control A Unifying Review and Some New Results”. Industrial and Engineering Chemistry Process Design and Development, Vol.21, pp.308-323.
[6]. Rawlings, J. B., Angeli, D., & Bates, C. N., (2012). “Fundamentals of Economic Model Predictive Control”. in st Proceedings of 51 IEEE Conference on Decision and Control, Maui, Hawaii, pp.3851–3861.
[7]. R. Scattolini and S. Bittanti, (1990). “On the Choice of the Horizon in Long-range Predictive Control-some Simple Criteria”. Automatica, Vol.26(5), pp.915-917.
[8]. C.V. Rao, S.J. Wright, and J.B. Rawlings, (1998). “Application of Interior Point Methods to Model Predictive Control”. Journal of Optimization Theory and Applications, Vol.99(3), pp.723-757.
[9]. A.E. Bryson and Y. Ho., (1975). Applied Optimal Control. Hemisphere Publishing, New York.
[10]. P. E. Gill, W. Murray, and M. H. Wright, (1981). Practical Optimization. Academic Press, London.
[11]. Froisy, J. B., (1994). “Model Predictive Control: Past, Present and Future”. ISA Transactions, Vol.33, pp.235–243.
[12]. Mayne, D. Q., Rawlings, J. B., Rao, C. V., & Scokaert, P. O. M., (2000). “Constrained Model Predictive Control: Stability and Optimality”. Automatica, Vol.36, pp.789–814.
[13]. Lazar, M., Hemeels, W. P. M. H., & Teel, A. R., (2009). “lyapunov Functions, Stability and Input-to-state Stability Subtleties for Discrete-time Discontinuous Systems”. IEEE Transactions on Automatic Control, Vol.51(11), pp.2421– 2425.
[14]. Lazar, M., Hemeels, W. P. M. H., & Teel, A. R., (2013). “Further Input-to-state Stability Subleties for Discrete-time Systems”. IEEE Transactions on Automatic Control, Vol.58(6), pp.1609–1613.
[15]. Bemporad, A., and Morari, M., (1999). “Control of Systems Integrating Logic, Dynamics, and Constraints”. Automatica, Vol.35, pp. 407–427.
[16]. Goebel, Rafal, Sanfelice, Ricardo G., & Teel, A., (2009). “Hybrid Dynamical Systems”. IEEE Control Systems Magazine, Vol.29(2), pp.28–93.
[17]. Jones, C. N., (2014). “Approximate Receding Horizon Control”. Predictive Control for Linear and Hybrid Systems, Cambridge University Press.
[18]. J. B. Rawlings and K. R. Muske, (1993). “Stability of Constrained Receding Horizon Control”. IEEE Transactions on Automation and Control, Vol.38(10), pp.1512-1516.
[19]. Bemporad, A., Morari, M., Dua, V., and Pistikopoulos, E., (2002). “The Explicit Linear Quadratic Regulator for Constrained Systems”. Automatica, Vol.38(1), pp.3–20.
[20]. Qin, S. J., &Badgwell, T. A., (2003). “A survey of Industrial Model Predictive Control Technology”. Control Engineering Practice, Vol.11, pp.733–764.
[21]. Marafiore, Giancarlo, Bitmead, Robert R., & Hovd, Morten, (2013). “Persistently Exciting Model Predictive Control”. International Journal of Adaptive Control and Signal Processing, Vol.17(1), pp.15979-15984.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Online 200 35 35 200 15
Pdf 35 35 200 20
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.