The digital computing systems like mathematical co-processors, micro-processors, digital filters must be highly efficient in terms of computational time. The most fundamental operation in any computing systems is multiplication. The multiplier should therefore employ minimum processing time by the use of high speed adders. This paper describes the design of Vedic Multiplier using Kogge Stone Adder (the fastest Parallel Prefix Adder) and Booth Multiplier (based on two's complement notation). The two designs have been compared based on delay, levels of logic, number of slices, and memory usage. Based on the synthesis report obtained, the delay in Booth Multiplier has been found to be very less compared to Vedic Multiplier however, during simulation in Booth Multiplier the response to the inputs is not instantaneous, but there is a large amount of wait period in getting the output as the count signal increments in the sequential circuit which is not the case with Vedic Multiplier (Combinational Circuit). This showed that the Booth Multiplier is slower compared to Vedic Multiplier. The two designs have been implemented in Xilinx ISE 14.4 for the family of devices Spartan 6 with the device name Xc6slx45, package csg324,and speed grade of -3.