References
[1]. Meera, V.K. & Katariya, S.S. (2013). “Signature
Verification & Recognition – Case Study”, International
Journal of Electronics, Communication & Instrumentation
Engineering Research and Development, Vol. 3, No. 1.
[2]. Sabourin, R. Batista, L. & Granger, E. (2012).
“Dynamic selection of generative–discriminative
ensembles for off-line signature verification”, Laboratoire
dimagerie”, de vision et dintelligence artificielle, Ecole de
technologie superieure, 1100, rue Notre-Dame Ouest,
Montreal, QC, Canada H3C 1K, Pattern Recognition, Vol. 45,
pp.1326–1340.
[3]. Kasturi, R. Lawrence, & O. G. Govindaraju, V. (2002).
Document image analysis: A primer, Sadhan, Vol. 27, Part
1, pp. 3–22.
[4]. Rasheed, N. A. (2010). “Proposed Preprocessing
Algorithm For Signatures Recognition”, Issue / special magazine College of Education Basic / University of
Babylon, Fourth Scientific Conference of the Faculty of
Education, basic / Babylon University 0222 Research.
[5]. Kanawade, M. V. & Katariya, S. S. (2013). “Review of
Offline Signature Verification & Recognition System”,
International Journal of Emerging Technology and
Advanced Engineering, ISSN 2250-2459, ISO 9001:2008
Certified Journal, Vol. 3, No. 7.
[6]. Chudhary, N. Y., Patil, R., Bhadade, U. & Choudari, B.
M. (2013). “Signature Recognition & Verification System
Using Back Propagation Neural Network”, International
Journal of IT, Engineering and Applied Sciences Research
(IJIEASR), ISSN: 2319-4413, Vol. 2, No. 1.
[7]. Davda, H. V. & Gonsai, S. K. (2014). “Offline Signature
Verification System Using Energy on Grid Level”,
International Journal of Engineering Research
(ISSN:2319-6890)(online), 2347-5013 (print), Vol. 3, No. 2,
pp. 104-107.
[8]. Dubey, P. & Sharma, S. D. (2013). “A Survey Paper on
Noise Estimation and Removal Through Principal
Component Analysis”, International Journal of Emerging
Technology and Advanced Engineering, ISSN 2250-2459,
ISO 9001:2008 Certified Journal, Vol. 3, No. 6.
[9]. Thirumurugan, P. & Kumar, S. S. (2014). “Performance
analysis of Impulse Noise Reduction Algorithms: Survey”,
International Journal of Current Research and Academic
Review, ISSN: 2347-3215, Vol. 2, No. 5, pp. 114-123.
[10]. Kaur, B. Dhir, V. (2013). “Neural Network Based New
Algorithm for Noise Removal and Edge Detection: A
Survey”, International Journal of Innovative Research in
Science, Engineering and Technology, ISO 3297: 2007
Certified Organization, ISSN: 2319-8753, Vol. 2, No. 10.
[11]. Gayathri, R. & Sabeenian, R. S. (2012). “A Survey on
Image Denoising Algorithms (IDA)”, International Journal
of Advanced Research in Electrical, Electronics and
Instrumentation Engineering, Vol. 1, No. 5, ISSN: 2278 –
8875.
[12]. Holzinger, A. Stocker, C. Peischl, B. & Simonic, K. M.
(2012). “On Using Entropy for Enhancing Handwriting
Preprocessing”, Entropy.
[13]. Golabi, S., Saadat, S., Helfroush, M. S. &,Tashk, A. (2012). “A Novel Thinning Algorithm with Fingerprint
Minutiae Extraction Capability”, International Journal of
Computer Theory and Engineering, Vol. 4, No. 4, pp. 514-
517.
[14]. Vincze, M. & Kovari, B. (2011). “Comparative Survey
th of Thinning Algorithms”, 10 International Symposium of
Hungarian Researchers on Computational Intelligence
and Informatics, pp. 173-184.
[15]. Saeed, K., Dzki, M. T., Rybnik, M., & Adamski, M. A
“Universal Algorithm For Image Skeletonization And A
Review Of Thinning Techniques”, Int. J. Appl. Math.
Comput. Sci., , Vol. 20, No. 2, pp. 317–335.
[16]. Kumar, H. & Kaur, P. (2011). “A Comparative Study of
Iterative Thinning Algorithms for BMP Images”, (IJCSIT)
International Journal of Computer Science and
Information Technologies, Vol. 2, No. 5, pp. 2375-2379.
[17]. Karnea, A. S. & Navalgunda, S. S. “Implementation
of an Image Thinning Algorithm using Verilog and
MATLAB”, International Journal of Current Engineering
and Technology, ISSN 2277 – 4106.
[18]. Chatbri, H. & Kameyama, K. (2014). “Using scale
space filtering to make thinning algorithms robust
againstnoise in sketch images”, Pattern Recognition
Letters, Vol. 42, pp. 1–10.
[19]. Al-Mahadeen, B., Al-Tarawneh, M. S. & Al-Tarawneh,
I. H. (2010). “Signature Region of Interest using Auto
cropping”, (IJCSI) International Journal of Computer
Science, Vol. 7, No. 2, No 4.
[20]. Gautam, C. M., Sharma, S. & Verma, J. S. (2012). “A
GUI for Automatic Extraction of Signature from Image
Document ”, International Journal of Computer
Applications (0975 – 8887), Vol. 54, No.15.
[21]. Sachin, S. P., Banumathi, K. L., & Vanitha, R. (2014).
“Database Development of Historical Documents: Skew
Detection And Correction”, International Journal of
Advanced Technology in Engineering and Science, Vol. 2,
No. 7, pp. 1-10.
[22]. Holzinger, A., Stocker, C., Peischl, B. & Simonic, K. M.
(2012). “On Using Entropy for Enhancing Handwriting
Preprocessing”, Entropy (doi:10.3390/e14112324),
Vol.14, pp. 2324-2350.
[23]. Sigari, M. H., Pourshahabi, M. R., & Pourreza, H. R.
(2011). “Offline Handwritten Signature Identification and
Verification Using Multi-Resolution Gabor Wavelet”,
International Journal of Biometrics and Bioinformatics
(IJBB), Vol. 5, No. 4, pp. 234-248.
[24]. Al-Shatnawi, A. M. & Omar, K. (2009). “Skew
Detection and Correction Technique for Arabic
Document Images Based on Centre of Gravity”, Journal
of Computer Science, Vol. 5, No. 5, pp. 363-368.
[25]. Hull, J.J. (1998). Document Image Skew Detection:
Survey And Annotated Bibliography, Document Analysis
Systems II, J..J.Hull, S.L. Taylor, Eds., World Scientific, pp. 40-
64.
[26]. Egozi, A. & Dinstein, I. (2011). “Statistical mixture
model for documents skew angle estimation”, Pattern
Recognition Letters, Vol. 32, pp. 1912–1921.
[27]. Christopher, Bishop, M. (2006). Pattern Recognition
and Machine Learning, Springer.
[28]. Manjunath Aradhya, V. N., Naveen C., & Niranjan S.
K., (2011). “Skew estimation for unconstrained
handwritten documents”, Proceedings of ICACC, pp.
1542-1548.