References
[1]. FEWSNET, (2009). United Nations' FEWS (famine early
warning systems) program. Retrieved from http://www.
fews.net/Pages/default.aspx?l=en
[2]. Getachew, B., Tsegaye, T., Solomon, A., & Shawndra,
H. (2010). “Drought monitoring in food insecure areas of
Ethiopia by using satellite technologies”. In Filho, W. L.
(Ed.), Experiences of Climate Change Adaptation in
Africa, pp. 183-200. Hamburg, Germany: Springer.
[3]. Huang, B., & Jiang, B., Li, H. (2001). “An integration of
GIS, virtual reality and the Internet for visualization, analysis
and exploration of spatial data”. International Journal of
Geographical Information Science, Vol. 15, No. 5, pp.
439 – 456.
[4]. Michael, J. H., Mark D. S., Donald A. W., & Olga V. V.
(1999). “Monitoring the 1996 drought using the
standardized precipitation index”, Bull. Amer. Meteor.
Soc., Vol. 80, pp. 429–438. doi: http://dx.doi.org/10.1175
/1520-0477(1999)080<0429:MTDUTS>2.0.CO;2
[5]. Musaningabe, R. C. (2007). Mining drought from
remote sensing images, Master's Thesis. Retrieved from
https://www.itc.nl/
[6]. Perona, P., & Malik, J. (1990). “Scale-space and edge
detection using anisotropic diffusion”. IEEE Transactions
on Pattern Analysis and Machine Intelligence (TPAMI), Vol.
12, No. 7, pp. 629-639. DOI: 10.1109/34.56205
[7]. Peters, A.J., Walter Shea, E.A., Vina, A, Hayes, M.J., &
Svoboda, M.D. (2000). “Drought Monitoring with NDVIB
ased Standardized Vegetation Index”.Photogrammetric Engineering & Remote Sensing, Vol. 68
No. 1, pp. 71-75.
[8]. Rulinda, C.M., Bijker, W., & Stein, A. (2009). “Image mining for drought monitoring in eastern Africa using
Meteosat SEVIRI data”. International Journal of Applied
Earth Observation and Geoinformation, Vol.12, No. 1, pp.
S63–S68.
[9]. Sharma, A. (2007). Spatial Data Mining for Drought
Monitoring: An Approach Using temporal NDVI and
Rainfall Relationship, Master's Thesis. Retrieved from
https://www.itc.nl/1.
[10]. Siqi, D. (2011). Predicting Dynamics of Vegetative
Drought Classes Using Fuzzy Markov Chains, Master's
Thesis. Retrieved from https://www.itc.nl/
[11]. Tatiraju S., & Mehta A. (2008), “Image segmentation
using k-means clustering, EM and Normalized Cuts”.
Department of EECS University Of California – Irvine, Ca
92612. Retrieved from www.ics.uci.edu
[12]. Thiruvengadachari, S., & Gopalkrishana, H.R.
(1993). “An integrated PC Environment for the Assessment
of drought”. International Journal of Remote Sensing, Vol.
14, No. 17, pp. 3201 – 3208.
[13]. Tucker, C.J. & Choudhary, B.J. (1987). “Satellite
remote sensing of drought conditions”. Remote Sensing
of Environment, Vol. 23, No. 2, pp. 243-251.
[14]. Weeratunga, S.K., & Kamath, C. (2002). “PDE-based
non-linear diffusion techniques for denoising scientific
and industrial images: an empirical study”. In Image
Processing: Algorithms and Systems Conference, SPIE,
Vol. 4667, pp. 279–290.
[15]. Wilhite, D.A. (2000). “Drought as a natural hazard:
concepts and definitions”. Drought - A Global
Assessment, Vol. 1, pp. 3–18.
[16]. Taye.T. & Kumudha. R, (2011). Intelligent system
based Drought Prediction using Satellite Images, Master’s
Thesis. Retrived from http://etd.aau.edu.et/ bitstream/
123456789/4454/3/Taye%20Tolu.Pdf.