References
[1]. Hari Mohan Rai and Anurag Trivedi (2012).
“Classification of ECG Waveforms for Abnormalities
Detection using DWT and Back Propagation Algorithm”,
International Journal of Advanced Research in Computer
Engineering & Technology, Vol. 1, No. 4.
[2]. S. Osowski and T.H. Linh, (2001). “ECG beat
recognition using fuzzy hybridneural network”, IEEE Trans.
Biomed. Eng. Vol. 48, pp. 1265-1271.
[3]. Maedeh Kiani Sarkaleh and Asadollah Shahbahrami
(2012). “classification of ecg arrhythmias using discrete
wavelet transform and neural networks”, IJCSEA, Vol. 2,
No.1.
[4]. K. Minami, H. Nakajima and T. Toyoshima, (1999).
“Real-Time discrimination of ventricular tachyarrhythmia
with fourier-transform neural network”, IEEE Trans. on
Biomed. Eng, Vol. 46, pp.179-185.
[5]. I. Romero and L. Serrano, (2001). “ECG
frequency
domain features extraction: A new characteristic for
arrhythmias classification”, in Proc.23rd Annual Int. Conf.
on Engineering in Medicine and Biology Society, pp.
2006-2008.
[6]. P. De Chazal, M. O'Dwyer and R. B. Reilly, (2000).
“A
comparison of the ECG classification performance of
different feature sets”, IEEE Trans. on Biomed. Eng, Vol. 27,
pp. 327-330.
[7]. P. De Chazal, M. O'Dwyer and R. B. Reilly, (2004).
“Automatic classification of heartbeats using ECG
morphology and heartbeat interval features”, IEEE Trans.
on Biomed. Eng, Vol. 51, pp. 1196-1206.
[8]. C. Alexakis, H. O. Nyongesa, R. Saatchi, N. D.
Harris,
C. Davis, C. Emery, R. H. Ireland and S. R. Heller, (2003).
“Feature extraction and classification of
electro cardiogram (ECG) signals related to
hypoglycemia”, Proc. Computers in Cardiology, Vol. 30,
pp. 537-540.
[9] P. Ivanov et al., (2009). “Levels of complexity
in
scaleinvariant neural signals”, Physical Review.
[10]. N. Srinivasan, D. F. Ge and S. M. Krishnan,
“Autoregressive Modeling and Classification of Cardiac
Arrhythmias”, Proceedings of the Second Joint
Conference Houston, TX. USA -October, pp. 23-26,2W2.
[11]. Hafizah Hussain and Lai Len Fatt, (2007).
“Efficient
ECG Signal Classification Using Sparsely Connected
Radial Basis Function Neural Network”, Proceeding of the
th 6 WSEAS International Conference on Circuits, Systems,
Electronics, Control and Signal Processing, pp. 412-416.
[12]. Marcel R. Risk, Jamil F. Sobh and J. Philip Saul,
(1997). “Beat Detection and Classification of ECG Using
th Self Organizing Maps”, Proceedings - 19 International
Conference - IEEEIEMBS, Oct. 30 - Nov. 2, 1997, Chicago,
IL. USA.
[13]. Yuksel Ozbay, Rahime Ceylan and Bekir Karlik,
(2011). “Integration of type-2 fuzzy clustering and wavelet
transform in a neural network based ECG classifier”, Expert
Systems with Applications, Vol.38, pp.1004-1010.
[14] .The MIT-BIH Arrhythmia Database, Retrived from
http://physionet.ph.biu.ac.il/physiobank/database/
mitdb/
[15]. R. Mark and G. Moody, “MIT-BIH Arrhythmia
Database Directory”. Retrived from http://ecg.mit.edu
/dbinfo.html
[16]. Hari Mohan Rai and Anurag Trivedi, (2012).
“Denoising
of ECG waveforms using multiresolution wavelet
transform”, International Journal of Computer
Application, Vol. 45, No. 18.
[17]. Michel Misiti, Yves Misiti, Georges Oppenheim,
Jean-Michel Poggi, (1996). “ Wavelet Toolbox for use with
MATLAB”, Vol. 1.
[18]. A. R. Sahab, Y. Mehrzad Gilmalek, (2011). “An
Automatic Diagnostic Machine for ECG Arrhythmias
classification Based on Wavelet Transformation and
Neural Networks”, International Journal of Circuits,
Systems And Signal Processing, Vol. 5, No. 3.
[19]. Richard O. Dude, Peter E Hart and David G stork,
(2002). Patternclassification, (II Edition) John Wiley.
[20]. Math works, “Neural Network Toolbox”.
Retrived from
http:// www.mathworks.com
[21]. L. Khadra, A. Fraiwan and W. Shahab, (2002).
“Neural-wavelet analysis of cardiac arrhythmias”, Proceedings
of the WSEAS International Conference on
Neural Network and Applications (NNA '02), Interlaken,
Switzerland, February 11-15, pp.3241-3244.
[22]. Qian Zheng, Chao Chen and Zhinan Li, (2013).
“A
Novel Multi-Resolution SVM (MR-SVM) Algorithm to detect
ECG signals anomaly in WE-CARE project”, Center for
Wireless Communication and Signal Processing.
[23]. Sarikal, P. and Wahidabanu, R. (2010).
“Robust R
peak & QRS detection in electrocardiogram using
wavelet transform”, (IJACSA) International Journal of
Advanced Computer Science Applications, Vol.1, No. 6,
pp. 48-53.
[24]. Gothwal, H., Kedawat, S., and Kumar, R. (2011).
“Cardiac arrhythmias detection in an ECG beat signal
using fast Fourier transform and artificial neural network”,
Journal of Biomedical Science & Engineering, Vol. 4, No.
4, pp. 289-296.
[25]. Qibin Zhao and LiqingZhan. (2005). “ECG
Feature
Extraction and Classification Using Wavelet Transform and
Support Vector Machines”, International Conference on
Neural Networks and Brain, ICNN&B, Vol. 2, pp. 1089-
1092.
[26]. Awadhesh Pachauri, and Manabendra Bhuyan
(2009). “Robust Detection of R-Wave Using Wavelet
Technique”, World Academy of Science, Engineering
and Technology 56.
[27]. Ashley EA and Niebauer J. (2004). “Conquering
the
ECG”, London: Remedica.
[28]. F. A Davis, (2005). ECG notes.
[29]. V. S. Chouhan, and S. S. Mehta (2008).
“Detection of
QRS Complexes in 12- lead ECG using Adaptive
Quantized Threshold”, IJCSNS International Journal of
Computer Science and Network Security, Vol. 8, No. 1.
[30]. M.B. Tayel, and Mohamed E. El-Bouridy (2006).
“ECG Images Classification Using Feature Extraction
Based On Wavelet Transformation And Neural Network”,
ICGST, International Conference on AIML.
[31]. P. Tadejko, and W. Rakowski, (2007).
“Mathematical
Morphology Based ECG Feature Extraction for the Purpose
th of Heartbeat Classification”, 6 International Conference
on Computer Information Systems and Industrial
Management Applications, CISIM '07, pp. 322-327.
[32]. F. Sufi, S. Mahmoud, I. Khalil (2008). “A new
ECG
obfuscation method: A joint feature extraction &
corruption approach”, International Conference on
Information Technology and Applications in
Biomedicine, pp. 334-337.
[33]. S. C. Saxena, A. Sharma, and S. C. Chaudhary
(1997). “Data compression and feature extraction of ECG
signals”, International Journal of Systems Science, Vol. 28,
No. 5, pp. 483-498.
[34]. “Heartbeat Electrocardiogram (ECG) Signal
Feature
Extraction Using Discrete Wavelet Transforms (DWT)”.
[35]. E.D. Ubeyli (2009). “Detecting variabilities
of ECG
Signals by Lyapunov Exponents”, Neural Computing and
Applications, Vol.18, No. 7, pp. 653-662.