References
[1]. Verma B, Zakos J. (2001). “A computer-aided
diagnosis system for digital mammograms based on
fuzzy-neural and feature extraction techniques”, IEEE
Trans InfTechnol Biomed, Vol. 5, pp. 46–54.
[2]. Gletsos M, Mougiakakou SG, Matsopoulos GK, Nikita
KS, Nikita AS, and Kelekis D. (2003). “A computer-aided
diagnostic system to characterize CT focal liver lesions:
design and optimization of a neural network classifier”,
IEEE Trans InfTechnol Biomed, Vol. 7, pp.153–162.
[3]. Schmid-Saugeona P, Guillodb J, and Thirana JP
(2003). “Towards a computer-aided diagnosis system for
pigmented skin lesions”, Comput Med Imaging Graph,
Vol. 27, pp. 65–78.
[4]. Gur D, Sumkin JH, Rockette HE, Ganott M, Hakim C,
Hardesty L, Poller WR, Shah R, and Wallace L (2004).
“Changes in breast cancer detection and
mammography recall rates after the introduction of a
computer-aided detection system”, J Natl Cancer Inst,
Vol. 96, pp.185–190.
[5]. Siyal M.Y. and Yu Lin (2005). “An intelligent modified
fuzzy c-means based algorithm for bias estimation and
segmentation of brain MRI”, Pattern Recognition Letters,
Vol. 26, pp. 2052–2062.
[6]. N. R. Pal, and S. K. Pal, (1993). “A Review on Image
Segmentation Techniques”, Pattern Recognition, Vol. 26,
No. 9, pp. 1277-1294.
[7]. W. X. Kang, Q. Q. Yang, and R. R. Liang, (2009). “The
Comparative Research on Image Segmentation
Algorithms”, IEEE Conference on ETCS, pp. 703-707.
[8]. H. G. Kaganami, and Z. Beij, (2009). “Region Based Detection versus Edge Detection”, IEEE Transactions on
Intelligent information hiding and multimedia signal
processing, pp.1217-1221.
[9]. C. Zhu, J. Ni, Y. Li, and G. Gu, (2009). “General
Tendencies in Segmentation of Medical Ultrasound
Images”, International Conference on ICICSE, pp. 113-
117.
[10]. K. Dehariya, S. K. Shrivastava, and R. C. Jain, (2010).
“Clustering of Image Data Set Using K- Means and Fuzzy KMeans
Algorithms”, International Conference on CICN,
pp. 386- 391.
[11]. T. Kanungo, D. M. Mount, N. Netanyahu, C. Piatko, R.
Silverman, and A. Y. Wu (2002). “An efficient k-means
clustering algorithm: Analysis and implementation Proc”,
IEEE Conf. Computer Vision and Pattern Recognition,
pp.881-892.