References
[1]. A. Heinz, A. Haszler, C. Keidel, S. Moldenhauer, R.
Benedictus and W.S. Miller, (2000). “Recent development
in aluminium alloys for aerospace applications”, Materials
Science and Engineering, pp. 102–107.
[2]. E. A. Starke, Jr and J. T. Staley, (1996). “Applications of
modern aluminium alloys to aircraft”, Prog. Aerospace Sci.,
Vol. 32, pp. 131-172.
[3]. J.P. Immarigeon, R. T. Holt, A. K. Koul, L. Zhao, W.
Wallace and C. Beddoes, (1995). “Lightweight materials
for aircraft applications”, Materials Characterization, Vol.
35, pp. 41-67.
[4]. B. Vermeulen and M.J.L. Van Tooren, (2004). “Design
case study for a comparative performance analysis of
aerospace materials”, Materials and Design, Vol. 27,
pp.10–20.
[5]. A. Mourtiz, (2012). Introduction to Aerospace
Engineering, Cambridge, Woodhead publishing, 39.
[6]. E.O. Ezugwu, J.Bonney and Y. Yamane, (2003). “An
overview of the machinability of aeroengine alloys”, Journal of Material Processing Technology, Vol. 134, pp.
233-253.
[7]. Sp.G. Pantelakis and N.D. Alexopoulos, (2008).
“Assesment of the ability of conventional and advanced
wrought aluminium alloys for mechanical performance in
light-weight applications”, Materials and Design, Vol. 29,
pp. 80–91.
[8]. Sp. Pantelakis, An. Kyrsanidi, E. El-Magd, J. Dunnwald,
Y. Barbaux and G. Pons, (1999). “Creep resistance of
aluminium alloys for the next generation supersonic civil
transport aircrafts”, Theoretical and Applied Fracture
Mechanics, Vol. 31, pp. 31-39.
[9]. Manabu Nakai and Takehiko Eto, (2000). “New
aspects of high strength aluminium alloys for aerospace
applications”, Materials Science and Engineering, pp.
62–68.
[10]. Tolga Dursun and Costas Soutis, (2014). “Recent
developments in advanced aircraft aluminium alloys”,
Materials and Design, Vol. 56, pp. 862-871.
[11]. P. E. Magnusen, R.J. Bucci, A.J. Hinkle, J.R.
Brockenbrough and H.J. Konish, (1997). “Analysis and
prediction of microstructural effects on long-term fatigue
performance of aluminium aerospace alloy”, Int. J.
Fatigue, Vol. 19, pp. 275–S283.
[12]. Frank Czerwinsk, (2014). “Controlling the ignition and
flammability of magnesium for aerospace applications”, Corrosion Science, Vol. 86, pp. 1-16.
[13]. Ali Merati and Graeme Eastaugh, (2007).
“Determination of fatigue related discontinuity state of
7000 series of aerospace aluminium alloys”, Engineering
Failure Analysis, Vol. 14, pp. 673-685.
[14]. James C. Williams and Edgar A. Starke, Jr., (2003).
“Progress in structural materials for aerospace systems”,
Acta Materialia, Vol. 51, pp. 5775–5799.
[15]. J. Staley, D. Lege, (1993). “Advances in aluminium
alloy products for structural applications in transportation”,
Journal De Physique IV, pp. 179-190.
[16]. Ahmed K. Noor, Samuel L. Venneri, Donald B. Paul
and Mark A. Hopkins, (2000). “Structures technology for
future aerospace systems”, Computers and Structures, Vol.
74, pp. 507-519.
[17]. Cindie Giummarra, Bruce Thomas and Roberto J.
Rioja, (2007). “New aluminium lithium alloys for aerospace
applications”, Proceedings of the Light Metal Technology
Conference.
[18]. Zainul Huda and Prasetyo Edi, (2013). “Materials
selection in design of structures and engines of supersonic
aircrafts: A review”, Materials and Design, Vol. 46, pp. 552-
560.
[19]. RC Dorward and TR Pritchett, (1988). “Advanced
aluminium alloys for aircraft and aerospace applications”,
Materials and Design, Vol. 9, No. 2, pp. 63-69.