References
[1]. K. Adlassnig, (1986). “Fuzzy Set Theory in Medical
Diagnosis,” IEEE Transactions on Systems, MAN, and
Cybernetics, Vol.16, pp.260-265.
[2]. O. Taylan, and Bahattin Karagozog, (2009). “An
adaptive neuro-fuzzy model for prediction of student's
academic performance,” Computers and Industrial
Engineering, Elsevier, Vol.57, pp.732-741.
[3]. E.I. Papageorgiou, and W. Froelich, (2012). “Multistep
prediction of pulmonary infection with the use of
evolutionary fuzzy cognitive maps," Neurocomputing,
Elsevier, Vol.92, pp.28-35.
[4]. M.G. Forero, F. Sroubek, and G. Cristo, (2004).
“Identification of tuberculosis bacteria based on shape and
color,” Real-Time Imaging, Elsevier, Vol.10, pp.251-262.
[5]. T. Ucar, A. Karahoca, and D. Karahoca, (2013).
“Tuberculosis disease diagnosis by using adaptive neuro
fuzzy inference system and rough sets,” Neural
Computing and Applications. Springer, pp.471-483.
[6]. N. Walia, H. Singh, S. K. Tiwari, and A. Sharma, (2015).
“A Decision Support System for Tuberculosis
Diagnosability,” International Journal on Soft Computing
(IJSC), Vol.6, No.3, pp.1-14.
[7]. V. Prasath, N. Lakshmi, M. Nathiya, N. Bharathan, and
N. P. Neetha, (2013). “A Survey on the Applications of Fuzzy
Logic in Medical Diagnosis Support Systems Systems
Decision,” International Journal of Scientific and
Engineering Research, Vol.4, pp.1199-1203.
[8]. M.S. Katebi, H. Tabatabaee, M. Reza, B. Pour, M.
Branch, Y. Researchers, E. Club, and Q. Branch, (2014). “A
Fuzzy Expert System for the Preventopn and Diagnosis of
Blood Diseases,” Indian Journal of Fundamental and
Applied Life Sciences, Vol.4, pp.1017-1031.
[9]. J. C. Obi, and A. A. Imainvan, (2011). “Decision
Support System for the Intelligient Identification of
Alzheimer using Neuro Fuzzy logic,” International Journal
on Soft Computing ( IJSC), Vol.2, No.2, pp.25-38.
[10]. L. Review, (2012). “Using Learning Vector
Quantization Method For Automated Identification of
Mycobacterium Tuberculosis,” Indonesian Journal of
Tropical and Infectious diseases, Vol.3, No.1, pp.26-29.
[11]. K. Rawat, and K. Burse, (2013). “A Soft Computing
Genetic-Neuro fuzzy Approach for Data Mining and Its
Application to Medical Diagnosis,” International Journal
of Engineering and Advanced Technology (IJEAT),
pp.409-411.
[12]. M. Durairaj, and G. Kalaiselvi, (2015). “Prediction of
Diabetes using soft computing techniques- A Survey,”
International Journal of Scientific & Technology Research,
ISSN 2277-8616, Vol.4, No.03, pp.190-192.
[13]. N.A. Mohamad, N.A. Jusoh, and Z.Z. Htike, (2014).
“Bacteria Identification from Microscopic Morphology: A
Survey,” International Journal on Soft Computing, Artificial
Intelligence and Applications (IJSCAI), Vol.3.
[14]. U. Dev, A. Sultana, S. Talukder, and N. K. Mitra,
(2011). “A Fuzzy Logic Approach to Decision Support in
Medicine,” Bangladesh Journal of Scientific and Industrial
Research, Vol.46, pp.41-46.
[15]. H.B. Rachna, and M.S.M. Swamy, (2013). “Detection
of Tuberculosis Bacilli using Image Processing
Techniques,” International Journal of Soft Computing and
Engineering (IJSCE), Vol.3, pp.47-51.
[16]. A.R.C. Semogan, and B. D. Gerardo, (2011). “A Rule- Based Fuzzy Diagnostics Decision Support System for
Tuberculosis,” Ninth International Conference on
Software Engineering Research, Management and
Applications, pp.60-64.
[17]. N. Walia, H. Singh, and A. Sharma, (2015). “ANFIS:
Adaptive Neuro-Fuzzy Inference System- A Survey,”
International Journal of Computer Applications (IJCA),
Vol.123, No.13, pp.32-38.
[18]. N. Walia, S. K. Tiwari, and R. Malhotra, (2015).
“Design and Identification of Tuberculosis using Fuzzy
Based Decision Support System,” Advances in Computer
Science and Information Technology (ACSIT), ISSN 2393-
9907, Vol.2, pp.57-62.
[19]. M. Abdullah, Sunil G. Bhirud, and M. Afshar Alam,
(2014). “Disease Diagnosis using Soft Computing Model,”
International Journal of Computer Applications (IJCA),
Vol.102, No.10, pp.43–47.
[20]. S.M. Bateni, and D. Jeng, (2007). “Estimation of pile
group scour using adaptive neuro-fuzzy approach,”
Elsevier, Vol.34, pp.1344-1354.
[21]. A. N. Toosi, and M. Kahani, (2007). “A new approach
to intrusion detection based on an evolutionary soft
computing model using neuro-fuzzy classifiers,”
Computer Communications, Elsevier, Vol.30, pp.2201-
2212.
[22]. M. Wei, B. Bai, A. H. Sung, Q. Liu, J. Wang, and M. E.
Cather, (2007). “Predicting injection profiles using ANFIS,”
Information Sciences, Elsevier, Vol.177, pp.4445-4461.
[23]. J.R. Jang, (1993). “ANFIS: Adaptive-Network-Based
Fuzzy Inference System,” IEEE Transactions on Systems,
MAN, and Cybernetics, Vol.23, pp.1- 21.
[24]. T. Vasileva-stojanovska, M. Vasileva, T. Malinovski,
and V. Trajkovik, (2015). “An ANFIS model of quality of
experience prediction in education,” Applied Soft
Computing Journal, Elsevier, pp.1-10.