References
[1]. Volesky, B., and Holan, Z.R., (1995).
“Biosorption of
heavy metals, Biotechnology”, Prog, Vol.11, pp. 235-250.
[2]. Veglio, F., and Beolchini, F., (1997). “Removal
of
metals by biosorption: a review”, Hydrometallurgy, Vol.44,
pp.301-316.
[3]. Kowalshi, Z., (1994). “Treatment of chromic
tannery
wastes”, J.Hazard Mater, Vol.39, pp.137-144.
[4]. Sikaily, A.E.,. Nemr, A.E., Khaled, A., and
Abdelwahab, O., (2007). “Removal of toxic chromium
from waste water using green alga Ulva lactuca and its activated
carbon”, J.Hazard.Mater., Vol.148, pp. 216-
228.
[5]. Li, H., Li, Z., Liu, T., Xiao, X., Peng, Z., and
Deng, L.,
(2008). “A novel technology for biosorption and recovery
hexavalent chromium in wastewater by bio-functional
magnetic beads”, Bioresour.Technol., Vol. 99, pp. 6271-
6279.
[6]. Gomez, V., and Callo, M.P. (2006). “Chromium
determination and specialization since 2000, Trends”,
Anal.Chem., Vol. 25, pp. 1006-1015.
[7]. World Health Organization (2004), Guidelines for
drinking water quality, 3rd ed., Genrva, Vol.1, pp. 334.
[8]. Zhou, X., Korenaga, T., Takahashi, T Moriwake, T. and
Shinoda, S., (1993). “A process monitoring/controlling
system for the treatment of waste water containing (VI),
Water Res., Vol.27, pp.1049.
[9]. Tiravanti, G., Petruzzelli, D., and Passino, R.,
(1997).
“Pretreatment of tannery wastewaters by an ionexchange
process for Cr (III) removal and recovery”,
Water.Sci.Technol., Vol.36, pp. 197-207.
[10]. Seaman, J.C., Bertsch, P.M., and Schwallie, L.,
(1999). “In-Situ Cr (VI) reduction within coarse – textured
oxide-coated soil and aquifer systems using Fe (II)
solutions”, Environ.Sci.Technol., Vol.33, pp.938-944.
[11]. Kongsricharoern, N., and Polprasert, C., (1996).
“Chromium removal by a bipolar electro-chemical
precipitation process”, Water.Sci.Technol., Vol.34,
pp.109-116.
[12]. Pagilla, K.R., and Canter, L.W., (1999).
“Laboratory
studies on remediation of Chromium-contaminated
soils”, J.Environ.Eng, Vol.125, pp.243-248.
[13]. Chakravathi, A.K., Chowadary, S.B., Chakrabarty,
S., Chakrabarty, T., and Mukherjee, D.C., (1995). “Liquid
membrane multiple emulsion process of chromium (VI)
separation from waste waters”, Colloids, Surf. A, Vol.103,
pp.59-71
[14] . Aksu, Z., Ozer, D., Ekiz, H.I., Kutsal, T., and
Calar. A.,
(1996). “Investigation of Biosorption of Chromium (VI) on
Cladophora Crispata in Two-Staged Batch Reactor”,
Environ.Technol., Vol.17,pp. 215-220.
[15]. Huang, S.D., Fann, C.F., and Hsiech, H.S., (1982).
“Foam separation of chromium (VI) from aqueous
solution”, J. Colloid. Interface. Sci., Vol.89,pp. 504-513.
[16] . Park, D., Yun, Y.S., and Park, J.M., (2010).
“The past,
present and, and future trends of biosorption, Biotechnol.
Bioprocess. Eng, Vol.15, pp .86-102.
[17]. Mohan, D., and Jr. Pittman, C.U., (2006).
“Activated
carbon and low cost adsorbents for remediation of tri-and
hexavalent chromium from water”, J. Hazard. Mater., Vol.
137, pp. 762-811
[18]. Gupta, S., and Babu, B.V., (2009).
“Utilization of waste
product (Tamarind seeds) for the removal of Cr (VI) from
aqueous solutions: Equilibrium, kinetics and regeneration
studies”, J. Environ. Man., Vol. 90, pp.3013-3022.
[19]. Shafey, E.I., (2005). “Behavior of
reduction-sorption
of chromium (VI) from an aqueous solution on a modified
sorbent from rice husk”, Water Air Soil Pollution., Vol. 163,
pp. 81-102.
[20]. Sharma, A., and Bhattacharya, K.G., (2004).
“Adsorption of Pb (II) from aqueous solution by
Azadirachta indica (Neem leaf powder) ” ,
J.Hazard.Mater., pp. 113, 97.
[21]. Hasan, S.H., Singh, K.K., Prakash, O., Talat, M.,
and
Ho, Y.S., (2008). “Removal of Cr (VI) from aqueous solutions
using agricultural waste maize bran”, J.Hazard.Mater.
Vol.152, pp.356-365.
[22]. Bryant, P.S., Petersen, J.N.,Lee, J.M., and Brouns,
T.M., (1992). “Sorption of heavy metals by untreated red
sawdust”, Appl.Biochem.Biotechnol., Vol.34, pp. 777.
[23]. Song, W.X., Zhong, L.H., and Rong, T.S., (2009).
“Removal of chromium (VI) from aqueous solution using
walnut hull”, J.Environ.Man., Vol.90, pp.721-729.
[24]. Qaiser, S., (2009). “Biosorption of lead (II)
and
chromium (VI) on groundnut hull: Equilibrium, kinetics and
thermodynamics study ”, Electronic journal of
Biotechnology, Vol. 12.
[25]. Krishna, D., and Padma Sree, R., (2012).
“Removal
Of Chromium From Aqueous-Solution By Limonia-
Acidissima Hull Powder As Adsorbent”, i-manager’s
Journal on Future Engineering and Technology, Vol. 7(4),
May-July 2012, Print ISSN: 0973-2632, E-ISSN: 2230-7184, pp. 27-38.
[26]. Alam, M.Z, Muyibi, S.A, and Toramae, J., (2007).
“Statistical optimization of adsorption processes for
removal of 2,4-dichlorophenol by activated carbon
derived from oil palm empty fruit bunches”, J.Environ.Sci.,
Vol.19, pp.674-677.
[27]. Montgomerry D.C., (2001). Design and Analysis of
Experiments, 5th ed., John Wiley and Sons, New York, USA.
[28]. D. Krishna and R. Padma Sree (2012). “Removal
of
Chromium From Aqueous Solution by Ragi Husk Powder as
Adsorbent”, i-manager's Journal on Future Engineering
and Technology, 8(1), Aug-Oct 2012, Print ISSN 0973-
2632, E-ISSN 2230-7184, pp.6-18.
[29]. Garg, U.K., Kaur, M.P., Sud, D., and Garg, V.K.,
(2009). “Removal of hexavalent chromium from aqueous
solution by adsorption on treated sugarcane bagasse
using response surface methodology approach”,
Desalination, Vol. 249, pp. 475-479.
[30]. Sahu, J.N., Acharya, J., and Meikap, B.C., (2009).
“Response surface modeling and optimization of
chromium (VI) removal from aqueous solution using
tamarind wood activated carbon in batch process”,
J.Hazard.Mater, Vol.172, pp.818-825.
[31]. Salamatinia, B., Zinatizadeh, A.A., Kamaruddin,
A.H., and Abdullah, A.Z., (2006). “Application of response
surface methodology for the optimization of Cu and Zn
removals by sorption on Pre-treated oil palm Frond”,
Iranian Journal of Chemical Engineering, Vol. 3, pp. 73-
84.
[32]. Guaracho, V.V., Kaminari, N.M.S., Ponte, M.J.J.S.,
and Ponte, H.A., (2009). “ Central composite
experimental design applied to removal of lead and
nickel froms”, J.Hazard.Mater., Vol.172, pp. 1087-1092.
291-301.
[33]. Pillai, M.G., Regupathi, I., Kalavathy, M.H.,
Murugesan, T., and Miranda, L.R., (2009). “Optimization
and analysis of nickel adsorption on microwave irradiated
rice husk using response surface methodology”, J.
Chemical Technology and Biotechnology, Vol.84, pp.
[34]. Sahu, J.N., Acharya, J., and Meikap, B.C., (2010).
“Optimization production conditions for activated
carbons from Tamarind wood by zinc chloride using
response surface methodology”, Bioresour. Technol.,
Vol.101, pp. 1974-1982.
[35]. Garg, U.K., Kaur,M.P., Garg, V.K., and Sud, D.,
(2008).
“Removal of Nickel(II) from aqueous solution by
adsorption on agricultural waste biomass using a
response surface methodological approach”, Bioresour.
Technol., Vol.99, pp. 1325-1331.
[36]. Kalavathy, M.H., Regupahi, I., Pillai, M.G., and
Miranda, L.R., (2009). “Modeling analysis and
optimization of adsorption parameters for H3PO4
activated rubber wood saw dust using response surface
methodology”, Colloids and Surface B: Biointerfaces,
Vol.70, pp. 35-45.
[37]. Enes Sayan, (2006). “Ultrasound assisted
preparation
of activated carbon from alkaline impregnated hazelnut
shell: an optimization study on removal of Cu(II) from
aqueous solution”, Chem. Engg. J., Vol.115, pp. 213-218.