References
[1]. Hardy G.H., Littlewood J E. and Polya G, (1952). Inequalities, Cambridge University Press, Cambridge.
[2]. Hardy G. H., (1925). “Note on a theorem of Hilbert concerning series of positive terems”, Proceedings London
Mathematical Society, Vol.23(2), Records of Proceedings, XLV-XLVI.
[3]. Wuyi Zhong and Bichen Yang, (2007). “On a mutiple Hilbert-type integral inequality with the symmetric kernel”, Journal of
Inequalities and Applications, Article ID 27962, 17 pages, doi:10.1155/2007/27962.
[4]. Xie Zitian and Zeng Zheng, (2008). “A Hilbert-type integral inequality whose kernel Is a homogeneous form of degree -3”,
Journal of Mathematical Analysis and Applications, Vol.339, pp.324-331.
[5]. Yang Bicheng, (2008). “A new Hilbert-type integral inequality with some parameters”, Journal of Jilin University (Science
Edition), Vol.46(6), pp.1085-1090.
[6]. Yang Bicheng, (2009). “A Hilbert-type intergral inequality with the homogeneous kernel of real number degree”, Journal
of Jilin University (Science Edition), Vol.47(5), pp.887-892.
[7]. Zitian Xie and Xingdong Liu, (2009). “A new Hilbert-type integral inequality and its reverse”, Journal of Henan University
(Science Edition), Vol.39(1), pp.10-13.
[8]. Zheng Zeng and Zitian Xie, (2010). “On a new Hilbert-type integral inequality with the the integral in whole plane”, Journal
of Inequalities and Applications. Vol.2010, Article ID 256796, 8 pages, doi:10.1155/2010/256796.
[9]. Zitian Xie, Bicheng Yang, Zheng Zeng, (2010). “A New Hilbert-type integral inequality with the homogeneous kernel of
real number-degree”, Journal of Jilin University (Science Edition), Vol.48(6), pp.941-945.
[10]. Zitian Xie, Zeng Zheng, (2012). “A Hilbert-Type Integral Inequality with the Homogeneous Kernel of Degree -3 and a Best
Constant Factor”, Bulletin of Society for Mathematical Services and Standards, Vol.1(4), pp.5-11.
[11]. Zeng Zheng, XIE Zitian, Liu Xingdong, (2014). “A half-discrete Hilbert-type inequality with anonhomogeneous kernel”,
Pacic Journal of Applied Mathematics, Vol.6, pp.23-28.
[12]. ZENG Zheng, K. Raja Rama Gandhi, XIE Zitian, (2014). “A new Hilbert-type inequality with the homogeneous kernel of
degree -2 and with the integral”, Bulletin of Mathematical Sciences and Applications, Vol.3(1), pp.11-20.
[13]. Zitian Xie, Zeng Zheng, SUN Yufeng, (2013). “A new Hilbert-type inequality with the homogeneous kernel of degree -2”,
Advances and Applications in Mathematical Sciences, Vol.12(7), pp.391-401.
[14]. Zitian Xie, Zeng Zheng, (2013). “A new hilbert-type inequality in whole plane with the homogeneous kernel of degree 0”,
i-manager's Journal on Mathematics, Vol.2(1), pp.13-19.
[15]. Zitian Xie, K. Raja Rama Gandhi, Zeng Zheng, (2013). “A new Hilbert-type integral inequality with the homogeneous
kernel of real degree form and the integral in whole plane”, Bulletin of Society for Mathematical Services and Applications,
Vol.2(1), pp.95-109.
[16]. Zeng Zheng, Chang Xiaopeng, XIE Zitian, (2014). “A new Hilbert-type inequality with the homogeneous kernel of 0-
degree and equivalent form”, Journal of Henan University (Science Edition), Vol.44(4), pp.384-387.
[17]. Zeng Zheng, XIE Zitian, Liu Xingdong, (2014). “A half-discrete Hilbert-type inequality with anonhomogeneous kernel”,
Pacic Journal of Applied Mathematics, Vol.6(2), pp.115-120.
[18]. Zeng Zheng, XIE Zitian, SUN Yufeng, (2014). “A Hilbert type integral inequality with two pairs of conjugate exponents”,
Mathematics in practice and theory, Vol.44(19), pp.297-303.