A Comprehensive study of Enhancement and Segmentation Techniques on Microarray Images

Elavaar Kuzhali S*, Suresh D.S**
* Research Scholar, CIT, VTU Research Centre, Karnataka, India.
** Professor, Channabasaveshwara Institute of Technology, Gubbi, Tumkur, Karnataka, India.
Periodicity:June - August'2015
DOI : https://doi.org/10.26634/jpr.2.2.3568

Abstract

Microarray image enhancement and segmentation procedure are the rudimentary processing steps to obtain high quality image data that would truly reflect the underlying biology in the samples. Robust enhancement and segmentation has been the subject of research for many years, and it is important to understand these crucial steps. Reducing noise from the original image is still a challenging problem. It is important to preserve features like edges and sharp structures for better visualization and further analysis. After denoising, segmentation process is a vital step in microarray image. Selection of suitable algorithm for image segmentation is a very difficult task for a particular type of image although extensive work has been proposed. In this paper, the authors outline fundamental concepts of various existing algorithms, its advantages and limitations for microarray images. These algorithms are classified into various categories and a brief description and analysis of these algorithms is presented. This is an initiative to study, analyze and to provide future direction for research in the areas of microarray enhancement and segmentation techniques.

Keywords

Microarray Image Processing, Filtering and Enhancement Techniques, Segmentation Techniques.

How to Cite this Article?

Kuzhali, S. E., and Suresh, D. S. (2015). A Comprehensive study of Enhancement and Segmentation Techniques on Microarray Images. i-manager’s Journal on Pattern Recognition, 2(2), 46-55. https://doi.org/10.26634/jpr.2.2.3568

References

[1]. Karakach, T. K., Flight, R. M., Douglas, S. E., & Wentzell, P. D. (2010). “An introduction to DNA microarrays for gene expression analysis”, Chemometrics and Intelligent Laboratory Systems, Vol. 104(1), pp. 28-52.
[2]. Yang, Y. H., Buckley, M. J., Dudoit, S., & Speed, T. P. (2002). “Comparison of methods for image analysis on cDNA microarray data”, Journal of Computational and Graphical Statistics, Vol.11(1), pp.108-136.
[3]. Schena, M., Shalon, D., Davis, R. W., & Brown, P. O. (1995). “Quantitative monitoring of gene expression patterns with a complementary DNA microarray”, Science, Vol. 270(5235), pp. 467-470.
[4]. Tu, Y., Stolovitzky, G., & Klein, U. (2002). “Quantitative noise analysis for gene expression microarray experiments”, Proceedings of the National Academy of Sciences, Vol. 99(22), pp.14031-14036.
[5]. SMOLKA, B., & BIEDA, R. (2005). “Application of the adaptive noise removal technique to the enhancement of cDNA microarray images”, Journal of Medical Informatics and Technologies, Vol. 9, pp.131-142.
[6]. Smolka, B., & Plataniotis, K. N. (2005). “Ultrafast technique of impulsive noise removal with application to microarray image denoising”, In Image Analysis and Recognition, Springer Berlin Heidelberg, pp. 990-997.
[7]. Murugesan, R., & Thavavel, V. (2007). “A Two-phase Scheme for Microarray Image Restoration”, Journal of Information and Computing Science, Vol. 2(4), pp. 317- 320.
[8]. Lukac, R., Plataniotis, K. N., Smolka, B., & Venetsanopoulos, A. N. (2005). “A data-adaptive approach to cDNA microarray image enhancement”, In Computational Science–ICCS 2005, Springer Berlin Heidelberg, pp. 886-893.
[9]. Antonis Daskalakis, SpirosKostopoulos, Panagiota Spyridonos, DimitrisGlotsos, D. Cavouras, G. Nikoforidis (2007). “Wiener-Based Deconvolution Methods For Improving The Accuracy Of Spot Segmentation In Microarray Images”, 5th European Symposium on BioMedical Engineering, University of Patras cultural and conference Patras, Patras, Greece.
[10]. Moghadam, P. J., & Moradi, M. H. (2007). “Image sifting for micro array image enhancement”, In Computer Analysis of Images and Patterns, Springer Berlin Heidelberg, pp. 871-877.
[11]. Meher, J., Raval, M. K., Meher, P. K., & Dash, G. (2011). “The role of combined osr and sdf method for pre processing of microarray data that accounts for effective denoising and quantification”, Journal of Signal and Information Processing, Vol. 2(03), pp. 190.
[12]. Mastrogianni, A., Dermatas, E., & Bezerianos, A. (2009). “Microarray Image Denoising Using Spatial Filtering and Wavelet Transformation”, In 13th International Conference on Biomedical Engineering, Springer Berlin Heidelberg, pp. 594-597.
[13]. EmmanouilAthanasiadis et al.,(2006). "Microarray image enhancement techniques using the discrete  wavelet transform”, 2nd International Conference on Scientific Computing to Computational Engineering ICSCCE Athens, pp. 5-8.
[14]. Mastriani, M., & Giraldez, A. E. (2006). “Microarrays denoising via smoothing of coefficients in wavelet domain”, International Journal of Biomedical Sciences, Vol. 1(1), pp. 7-14.
[15]. Alagesan, R., & Manimekalai, M. M. (2013). “An Impressive Method to Remove High Density Salt-And Pepper Noise from Microarray Image”, International Journal of Advanced Research in Electronics and Communication Engineering, Vol. 2(3), pp. 337.
[16]. Zifan, A., Moradi, M. H., & Gharibzadeh, S. (2010). “Microarray image enhancement by denoising using decimated and undecimated multiwavelet transforms”, Signal, Image and Video Processing, Vol. 4(2), pp. 177- 185.
[17]. Nagaraja, J., & Manjunath, S. S. (2013). “A Fully Automatic Approach for Enhancement of Microarray Images”, Journal of Automation and Control Engineering Vol. 1(4).
[18]. SMOLKA, B (2008). “Adaptive generalized vector median”, Journal of Medical Informatics and Technologies, Vol. 12, pp. 157-162.
[19]. Lehmussola, A., Ruusuvuori, P., & Yli-Harja, O. (2006). “Evaluating the performance of micro array segmentation algorithms”, Bioinformatics, Vol. 22(23), pp. 2910-2917.
[20]. Fraser, K., Wang, Z., & Liu, X. (2010). Microarray Image Analysis: An Algorithmic Approach, CRC Press.
[21]. Angulo, J. (2007). “Morphological model-based microarray spot classification and segmentation in polar coordinates”, In Proc Int Conf Stereol.
[22]. Deepa, J., & Thomas, T. (2009). “Automatic segmentation of DNA microarray images using an improved seeded region growing method”, In Nature & Biologically Inspired Computing, NaBIC 2009 IEEE, pp. 1469-1474.
[23]. Nagesh, A. S., Varma, G. P. S., & Govardhan, A. (2010). “Evaluating the performance of watershed and morphology on microarray spot segmentation”, In Computing Communication and Networking Technologies (ICCCNT), pp. 1-10. IEEE.
[24]. Uslan, V., & Bucak I.O. (2010). “Clusturing-based spot segmentation of cDNA microarray images”, In Engineering in Medicine and Biology Society (EMBC), Annual International Conference of the IEEE, pp. 1828- 1831.
[25]. Tatiraju, S., & Mehta, A. (2008). Image Segmentation using k-means clustering, EM and Normalized Cuts, University of California Irvine.
[26]. Helmy, A. K., & El-Taweel, G. S. (2013). “Regular gridding and segmentation for microarray images”, Computers and Electrical Engineering, Vol. 39(7), pp. 2173-2182.
[27]. Giannakeas, N., Karvelis, P. S., Exarchos, T. P., Kalatzis, F. G., & Fotiadis, D. I. (2013). “Segmentation of microarray images using pixel classification — Comparison with clustering-based methods”, Computers in Biology and Medicine, Vol. 43(6), pp. 705-716.
[28]. Shao, G., Wang, T., Hong, W., & Chen, Z. (2013). “An improved SVM method for cDNA microarray image segmentation”. In Computer Science & Education (ICCSE), 8th International Conference on IEEE, pp. 391- 395.
[29]. Wang, Z., Zineddin, B., Liang, J., Zeng, N., Li, Y., Du, M., & Liu, X. (2013). “A novel neural network approach to cDNA microarray image segmentation”, Computer Methods and Programs In Biomedicine, Vol.111(1), pp.189-198.
[30]. Wang, Z., Zineddin, B., Liang, J., Zeng, N., Li, Y., Du, M., & Liu, X. (2014). “CDNA microarray adaptive segmentation”, Neurocomputing, Vol.142, pp. 408-418.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.