References
[1]. Issam H. Laradji, Mohammad Alshayeb, Lahouari
Ghouti. Software defect prediction using ensemble
learning on selected features Information, Computer
Science Department, King Fahd University of Petroleum
and Minerals, Dhahran 31261, Saudi Arabia.
[2]. M. Riaz, E. Mendes, E. Tempero, (2009). A systematic
review of software maintainability prediction and metrics,
rd in: Proceedings of the 2009 3 International Symposium
on Empirical Software Engineering and Measurement,
pp.367–377.
[3]. Y. Ma, G. Luo, X. Zeng, A. Chen, (2012). Transfer learning for cross-company software defect prediction,
Inform. Softw. Technol. Vol.54, pp.248–256.
[4]. Tosun, A. Bener, B. Turhan, T. Menzies, (2010). Practical
considerations in deploying statistical methods for defect
prediction:a case study within the Turkish
telecommunications industry, Inform. Softw. Technol.
Vol.52, pp.1242–1257.
[5]. Q. Song, Z. Jia, M. Shepperd, S. Ying, J. Liu, (2011). A
general software defect-proneness prediction
framework, IEEE Trans. Softw. Eng. Vol.37, pp.356–370.
[6]. N.V. Chawla, K.W. Bowyer, L.O. Hall, W.P. Kegelmeyer,
(2011). SMOTE: synthetic minority over-sampling
technique, arXiv:1106.1813.
[7]. T.M. Khoshgoftaar, E. Geleyn, L. Nguyen, L. Bullard,
(2002). Cost-sensitive boosting in software quality
modeling, in: Proceedings, 7th IEEE International
Symposium on High Assurance Systems Engineering,
pp.51–60.J.R.
[8]. Miyamoto, J. Miyakoshi, K. Matsuzaki, T. Irie, (2013).
False-positive reduction of liver tumor detection using
ensemble learning method, in: SPIE Medical Imaging,
pp. 86693B–86693B.
[9]. G. Wu, E. Chang, (2003). Adaptive feature-space
conformal transformation for imbalanced-data learning,
in: International Conference on Machine Learning (ICML
2003).
[10]. D. Gray, D. Bowes, N. Davey, Y. Sun, B. Christianson,
(2011). The misuse of the NASA metrics data program
data sets for automated software defect prediction, in:
Evaluation and Assessment in Software Engineering EASE
25, pp.12–25.
[11]. D. Zhong, J. Han, X. Zhang, Y. Liu, (2010).
Neighborhood discriminant embedding in face
recognition, Opt. Eng. 49. 077203-077203-7.
[12]. T.G. Dietterichl, (2002). Ensemble learning, in: The
Handbook of Brain Theory and Neural Networks,
pp.405–408.
[13]. F. Markowetz, (2001). Support Vector Machines in
Bioinformatics, Master's thesis, University of Heidelberg.
[14]. H. Chen, H. Ye, L. Chen, H. Su, (2004). Application of support vector machine learning to leak detection and
location in pipelines, in: Proceedings of the 21st IEEE
Instrumentation and Measurement Technology
Conference, IMTC 04, Vol.3, pp.2273–2277.
[15]. T. Menzies, B. Caglayan, E. Kocaguneli, J. Krall, F.
Peters, B. kurhan, (2012). The PROMISE repository of empirical software engineering data.
[16]. T. Hall, S. Beecham, D. Bowes, D. Gray, S. Counsell,
(2012). A systematic literature review on fault prediction
performance in software engineering, IEEE Trans. Softw.
Eng. Vol.38, pp.1276–1304.